留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤巷支护参数预测研究

陈攀 马鑫民 向俊杰 陈莉影 梁厅皓

陈攀,马鑫民,向俊杰,等. 煤巷支护参数预测研究[J]. 工矿自动化,2023,49(10):133-141.  doi: 10.13272/j.issn.1671-251x.2022120047
引用本文: 陈攀,马鑫民,向俊杰,等. 煤巷支护参数预测研究[J]. 工矿自动化,2023,49(10):133-141.  doi: 10.13272/j.issn.1671-251x.2022120047
CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141.  doi: 10.13272/j.issn.1671-251x.2022120047
Citation: CHEN Pan, MA Xinmin, XIANG Junjie, et al. Research on prediction of support parameters for coal roadways[J]. Journal of Mine Automation,2023,49(10):133-141.  doi: 10.13272/j.issn.1671-251x.2022120047

煤巷支护参数预测研究

doi: 10.13272/j.issn.1671-251x.2022120047
基金项目: 国家自然科学基金资助项目(52074301)。
详细信息
    作者简介:

    陈攀(1998—),男,云南曲靖人,硕士,主要从事巷道支护和水利勘察工作,E-mail:18811432245@163.com

    通讯作者:

    马鑫民(1979—),男,山东荷泽人,副教授,主要研究方向为矿山工程爆破和巷道支护智能化技术,E-mail:mxm@cumtb.edu.cn

  • 中图分类号: TD353

Research on prediction of support parameters for coal roadways

  • 摘要: 目前支持向量机(SVM)和随机森林(RF)等算法在煤矿巷道支护领域应用较少。研究了不同的机器学习模型进行支护参数设计的适用性,以建立一个更高性能的模型来实现锚杆支护的合理、科学设计。首先建立煤巷支护智能预测数据库:采用现场调研、问卷调查和文献检索等方式收集煤矿巷道样本;采用缺失值填补、箱形图修改离群点和局部异常因子剔除等方式对数据进行处理,建立煤巷支护数据库。提出一种基于合成少数类过采样(SMOTE)−遗传算法(GA)−SVM的煤巷支护参数预测模型:将数据库中的数据分成训练集与测试集,采用SMOTE技术平衡训练样本,提高模型对少数类样本的拟合能力;训练过程采用GA对SVM的超参数进行全局寻优,进一步提高模型整体性能。测试结果表明,SMOTE−GA−SVM模型的分类精度达到83.8%,比传统的SVM模型提高了21.8%。将SVM、人工神经网络(ANN)、RF、AdaBoost(ADA)和朴素贝叶斯分类器(NBC)等机器学习方法引入到煤巷锚杆支护参数预测中,建立对应的支护参数预测模型,比较结果表明:从最优到最差的预测模型排序分别为SMOTE−GA−SVM、RF、GA−ANN、SVM、NBC和ADA,6种模型的平均分类精度达69.9%,验证了机器学习方法在煤巷锚杆支护参数预测方面的可行性。在山西霍宝干河煤矿有限公司对SMOTE−GA−SVM模型进行了应用,模型预测准确率达87.5%,具有较强的适用性和可靠性。

     

  • 图  1  GA对SVM超参数寻优流程

    Figure  1.  GA optimization process for super parameters of SVM

    图  2  原始数据的箱形图

    Figure  2.  Box diagram of the original data

    图  3  训练集输入参数分布统计

    Figure  3.  Distribution statistics of input parameters of training set

    图  4  SMOTE平衡样本流程

    Figure  4.  Sample balancing flow by SMOTE

    图  5  煤巷支护数据库的整体构建流程

    Figure  5.  The overall building process of the coal roadway support database

    图  6  SMOTE−GA−SVM支护参数预测模型建立流程

    Figure  6.  SMOTE-GA-SVM supporting parameter prediction model establishment process

    图  7  输入变量在支护参数预测模型上的重要性

    Figure  7.  Importance of input variables in support parameter prediction model

    图  8  顶板锚杆间距GA−ANN预测模型的网络拓扑结构

    Figure  8.  Network topology of GA-ANN prediction model of roof bolt spacing

    表  1  基于LOF的异常样本检测结果

    Table  1.   Test results of abnormal samples based on local outlier factor(LOF)

    k=4k=5k=6k=7k=8k=9k=10
    105105105105331414
    843333331053325
    129848484148449
    33129154124842533
    1241241291541544984
    15415412414124105105
    36759012925154154
    9036172549124124
    7544441091097575
    70141097512910959
    下载: 导出CSV

    表  2  顶板锚杆支护参数统计

    Table  2.   Statistics of roof anchor bolt support parameters

    参数名称参数值频数参数名称参数值频数
    直径18 mm11间距700 mm5
    20 mm46800 mm39
    22 mm60900 mm36
    长度2 000 mm141 000 mm16
    2 200 mm171 100 mm9
    2 400 mm571 200 mm12
    2 500 mm20排距700 mm10
    2 600 mm9800 mm33
    数量4 根13900 mm16
    5 根281 000 mm38
    6 根531 100 mm7
    7 根231 200 mm13
    下载: 导出CSV

    表  3  顶板锚索支护参数统计

    Table  3.   Statistics of roof anchor cable support parameters

    参数名称参数值频数参数名称参数值频数
    直径15.24 mm14长度5300 mm20
    17.89 mm366300 mm39
    18.7 mm187300 mm22
    21.6 mm178300 mm32
    22 mm329300 mm4
    数量1 根4布置方式124
    2 根68271
    3 根39322
    4 根6
    下载: 导出CSV

    表  4  帮部支护参数统计

    Table  4.   Side support parameter statistics

    参数名称参数值频数参数名称参数值频数
    直径16 mm7间距700 mm10
    18 mm20800 mm41
    20 mm41900 mm21
    22 mm491 000 mm27
    长度1 800 mm161 100 mm4
    2 000 mm251 200 mm14
    2 200 mm12排距700 mm10
    2 400 mm43800 mm33
    2 500 mm21900 mm15
    数量2 根71 000 mm39
    3 根291 100 mm7
    4 根521 200 mm13
    5 根29
    下载: 导出CSV

    表  5  GA全局寻优结果

    Table  5.   Global optimization results of GA

    支护特征cbestgbest 支护特征cbestgbest
    顶板锚杆直径85.262.32 帮部锚杆间距33.655.30
    顶板锚杆长度6.750.63帮部锚杆排距54.232.65
    顶板锚杆间距70.767.44帮部锚杆数量30.234.64
    顶板锚杆排距81.042.07锚索直径74.627.55
    顶板锚杆数量32.973.71锚索长度61.501.51
    帮部锚杆直径73.868.96锚索数量87.002.65
    帮部锚杆长度10.535.07锚索布置70.725.30
    下载: 导出CSV

    表  6  机器学习模型在测试集上的分类精度

    Table  6.   Classification precision of machine learning model on test set %

    模型顶板锚杆精度帮部锚杆精度顶板锚索精度平均精度
    直径长度间距排距数量直径长度间距排距数量直径长度数量布置
    SVM66.083.666.079.274.854.070.470.464.857.254.079.274.869.268.8
    SMOTE−GA−SVM86.089.882.484.382.175.379.288.477.177.283.393.590.684.083.8
    RF79.274.852.883.666.070.461.661.674.852.857.292.488.079.271.0
    ADA72.664.553.857.857.848.451.137.659.261.848.478.780.775.360.5
    GA−ANN93.463.464.455.066.062.766.057.271.555.074.889.879.882.570.1
    NBC66.066.044.044.079.270.457.257.257.274.848.481.888.074.864.9
    下载: 导出CSV

    表  7  霍州矿区干河煤矿的特征参数

    Table  7.   Characteristic parameters of Ganhe Coal Mine in Huozhou Mining area

    序号巷道名称煤层厚
    度/m
    煤层强
    度/MPa
    基本顶厚
    度/m
    基本顶强
    度/MPa
    直接顶厚
    度/m
    直接顶强
    度/MPa
    直接底厚
    度/m
    直接底强
    度/MPa
    埋深/m巷道高度/m巷道宽度/m
    12−1161巷4.209.381.7065.066.4051.791.1051.794503.65.0
    22−1261巷3.7515.004.8086.092.4565.062.9019.164203.75.0
    3三采区辅助运输巷0.789.383.1265.064.9686.094.6045.404203.54.8
    42−1021巷4.2014.543.1057.323.8925.000.8037.455003.85.0
    下载: 导出CSV

    表  8  SMOTE−GA−SVM模型应用结果

    Table  8.   Application result of SMOTE-GA-SVM model

    序号巷道名称顶板锚杆帮部锚杆顶板锚索
    直径/
    mm
    长度/
    mm
    间距/
    mm
    排距/
    mm
    数量/
    直径/
    mm
    长度/
    mm
    间距/
    mm
    排距/
    mm
    数量/
    直径/
    mm
    长度/
    mm
    布置
    方式
    数量/
    1 2−1161巷 真实值 22 2500 900 900 6 22 2500 900 900 4 21.60 8300 2 3
    测试值 22 2400 900 900 6 22 2400 900 900 4 21.60 8300 2 3
    2 2−1261巷 真实值 22 2500 800 800 7 22 2500 800 800 5 21.60 8300 3 3
    测试值 22 2500 800 800 7 22 2500 800 800 5 21.60 8300 3 3
    3 三采区辅助运输巷 真实值 20 2000 800 800 7 20 2000 800 800 2 15.24 7300 2 2
    测试值 20 2000 800 1000 7 20 2000 800 1000 2 17.89 7300 2 2
    4 2−1021巷 真实值 22 2400 900 1000 6 22 2400 1000 1000 4 21.60 6300 2 2
    测试值 22 2400 900 1000 6 20 2400 1000 1000 4 21.60 7300 2 2
    下载: 导出CSV
  • [1] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报,2016,45(6):1071-1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology,2016,45(6):1071-1081.
    [2] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
    [3] 单仁亮,彭杨皓,孔祥松,等. 国内外煤巷支护技术研究进展[J]. 岩石力学与工程学报,2019,38(12):2377-2403.

    SHAN Renliang,PENG Yanghao,KONG Xiangsong,et al. Research progress of coal roadway support technology at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2377-2403.
    [4] 顾清华,江松,李学现,等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山,2022(5):10-25.

    GU Qinghua,JIANG Song,LI Xuexian,et al. Development status and prospect of mining system engineering under the background of artificial intelligence[J]. Metal Mine,2022(5):10-25.
    [5] 谢广祥,曹伍富,王德润,等. 基于人工神经网络的煤巷锚杆支护设计研究[J]. 煤炭学报,1999(6):599-604.

    XIE Guangxiang,CAO Wufu,WANG Derun,et al. The study on bolting support design in coal roadway based on artificial neural networks[J]. Journal of China Coal Society,1999(6):599-604.
    [6] 王茂源. 煤巷锚杆支护设计混合智能系统研究[D]. 北京:中国矿业大学(北京),2016.

    WANG Maoyuan. Hybrid intelligent system on coal roadway bolting design[D]. Beijing:China University of Mining and Technology-Beijing,2016.
    [7] 王哲哲,许梦国,程爱平,等. 模糊神经网络在巷道支护方案选择中的应用[J]. 化工矿物与加工,2019,48(1):16-19,23.

    WANG Zhezhe,XU Mengguo,CHENG Aiping,et al. Application of fuzzy neural network in selection of roadway support scheme[J]. Industrial Minerals & Processing,2019,48(1):16-19,23.
    [8] XU Qingyun,LI Yongming,LU Jie,et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support[J]. PLoS ONE,2020,15(7). DOI: 10.1371/journal.pone.0234071.
    [9] REN Heng,ZHU Yongjian,WANG Ping,et al. Classification and application of roof stability of bolt supporting coal roadway based on BP neural network[J]. Advances in Civil Engineering,2020. DOI: 10.1155/2020/8838640.
    [10] ZHANG Xiliang,NGUYEN H,BUI X,et al. Evaluating and predicting the stability of roadways in tunnelling and underground space using artificial neural network-based particle swarm optimization[J]. Tunnelling and Underground Space Technology,2020,103. DOI: 10.1016/j.tust.2020.103517.
    [11] PU Yuanyuan,APEL D,HALL R. Using machine learning approach for microseismic events recognition in underground excavations:comparison of ten frequently-used models[J]. Engineering Geology,2020. DOI: 10.1016/j.enggeo.2020.105519.
    [12] 马鑫民,范皓宇,林天舒,等. 基于GA−SVM的煤矿岩巷爆破效果智能预测[J]. 煤炭工程,2019,51(5):148-153.

    MA Xinmin,FAN Haoyu,LIN Tianshu,et al. Intelligent prediction of blasting effect of coal mine roadway based on GA-SVM[J]. Coal Engineering,2019,51(5):148-1533.
    [13] MAHDEVARI S,KHODABAKHSHI M B. A hierarchical local-model tree for predicting roof displacement in longwall tailgates[J]. Neural Computing and Applications,2021,33(21):14909-14928. doi: 10.1007/s00521-021-06127-y
    [14] 赵汝星. 基于随机森林的回采巷道围岩稳定性分类[J]. 煤矿安全,2014,45(11):200-202,206.

    ZHAO Ruxing. Classification of roadway surrounding rock stability based on random forest[J]. Safety in Coal Mines,2014,45(11):200-202,206.
    [15] 汪海燕,黎建辉,杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究,2014,31(5):1281-1286.

    WANG Haiyan,LI Jianhui,YANG Fenglei. Overview of support vector machine analysis and algorithm[J]. Application Research of Computers,2014,31(5):1281-1286.
    [16] JU Xuchan,YAN Zhenghao,WANG Tianhe,et al. Overview of optimization algorithms for large-scale support vector machines[C]. IEEE International Conference on Data Mining Workshops,Ningbo,2021:909-916.
    [17] CHAHAR V,KATOCH S,CHAUHAN S S. A review on genetic algorithm:past,present,and future[J]. Multimedia Tools and Applications,2020,80(5):8091-8126.
    [18] 谭文侃,叶义成,胡南燕,等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报,2021,40(6):1186-1194.

    TAN Wenkan,YE Yicheng,HU Nanyan,et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1186-1194.
    [19] FENG Shuo,KEUNG J,YU Xiao,et al. Investigation on the stability of SMOTE-based oversampling techniques in software defect prediction[J]. Information and Software Technology,2021,139(6). DOI: 10.1016/j.infsof.2021.106662.
    [20] CHAO Ying,YIN Kunlong,ZHOU Chao,et al. Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis[J]. Sensors,2020,20(3):845. doi: 10.3390/s20030845
    [21] 吕红燕,冯倩. 随机森林算法研究综述[J]. 河北省科学院学报,2019,36(3):37-41. doi: 10.16191/j.cnki.hbkx.2019.03.005

    LYU Hongyan,FENG Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences,2019,36(3):37-41. doi: 10.16191/j.cnki.hbkx.2019.03.005
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  20
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-09-20
  • 网络出版日期:  2023-10-23

目录

    /

    返回文章
    返回