Research on positioning method of mine track locomotives based on not line of sight error suppression
-
摘要: 矿井轨道机车定位方法以超宽带(UWB)定位为主,但井下运输巷道环境复杂,非视距传播多发,对UWB定位精度的影响严重。目前针对非视距传播引起的定位误差研究存在算法复杂、实时定位差等问题。通过分析轨道机车定位特点,在基于信号到达时间(TOA)的UWB定位技术基础上,提出一种基于非视距误差抑制的矿井轨道机车定位方法。在轨道机车不同位置安装2个定位卡,采用射频识别技术准确划分定位卡与定位基站的相对位置关系,根据UWB定位信号在非视距传播条件下测距值比实际值大的情况,采用2个定位卡之间距离测算值与实际值差值的经验范围,推算出不同定位卡和定位基站位置关系下非视距传播条件的鉴别阈值,通过该鉴别阈值剔除由非视距路径传播定位信号的测距值,使用由视距路径传播定位信号的测距值进行定位计算,实现对非视距误差的抑制,从而提高矿井轨道机车平均定位精度。测试结果表明:使用基于非视距误差抑制的矿井轨道机车定位方法,在定位信号处于视距传播条件时,机车平均定位误差均在1 m以内;在定位信号处于非视距传播条件时,大部分非视距误差得到了有效抑制,平均定位精度在1 m左右,轨道机车定位精度较常规基于TOA的UWB定位方法大幅度提升。Abstract: The positioning method for mine track locomotives is mainly based on ultra wide band (UWB) positioning. But the complex environment of underground transportation roadways and frequent not line of sight(NLOS) propagation seriously impact the precision of UWB positioning. At present, research on positioning errors caused by NLOS has problems such as complex algorithms and poor real-time positioning. Based on the analysis of the positioning characteristics of railway locomotives and the UWB positioning technology based on the time of arrival (TOA), a positioning method of mine track locomotive based on NLOS error suppression is proposed. Two positioning cards are installed at different positions on the track locomotive. Radio frequency identification technology is used to accurately divide the relative position relationship between the positioning card and the positioning base station. The distance measurement value of the UWB positioning signal is greater than the actual value under NLOS propagation conditions. Based on this situation, the empirical range of the difference between the distance measurement value and the actual value between the two positioning cards is used to calculate the discrimination threshold for NLOS propagation conditions under different position nelationship between positioning cards and positioning base station. By using this discrimination threshold, the ranging value of the positioning signal propagated by NLOS path is eliminated. The ranging value of the positioning signal propagated by the line of sight path is used for positioning calculation, so that to suppress NLOS errors and improve the average positioning precision of mine track locomotives. The test results show that using the positioning method of mine track locomotives based on NLOS error suppression, the average positioning error of locomotives is within 1 m when the positioning signal is in line of sight propagation conditions. When the positioning signal is in NLOS propagation conditions, most of the NLOS errors are effectively suppressed. The average positioning precision is about 1 meter. The positioning precision of track locomotives has been greatly improved compared with normal UWB positioning method based on TOA.
-
表 1 部分坐标位置平均定位误差
Table 1. Average positioning error of partial coordinate positions
m 序号 坐标
位置常规方法平均定位误差 本文方法平均定位误差 1 11 0.52 0.51 2 12 0.64 0.67 3 15 3.80 0.45 4 16 0.46 0.36 5 17 0.42 0.32 6 22 0.32 0.39 7 60 5.41 2.42 8 61 0.45 0.41 9 90 4.10 0.30 10 95 3.78 0.58 -
[1] 赵远,吉庆,王腾. 煤矿智能无轨辅助运输技术现状与展望[J]. 煤炭科学技术,2021,49(12):209-216.ZHAO Yuan,JI Qing,WANG Teng. Current status and prospects of intelligent trackless auxiliary transportation technology in coal mines[J]. Coal Science and Technology,2021,49(12):209-216. [2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. [3] 谭章禄,吴琦. 智慧矿山理论与关键技术探析[J]. 中国煤炭,2019,45(10):30-40.TAN Zhanglu,WU Qi. Analysis and discussion of smart mine theory and key technologies[J]. China Coal,2019,45(10):30-40. [4] 李梅,杨帅伟,孙振明,等. 智慧矿山框架与发展前景研究[J]. 煤炭科学技术,2017,45(1):121-128,134.LI Mei,YANG Shuaiwei,SUN Zhenming,et al. Study on framework and development prospects of intelligent mine[J]. Coal Science and Technology,2017,45(1):121-128,134. [5] 葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27.GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. [6] 郭梁,宋建成,宁振兵,等. 基于捷联惯性导航的矿用单轨吊机车定位算法[J]. 工矿自动化,2021,47(1):49-54,86. doi: 10.13272/j.issn.1671-251x.2020080015GUO Liang,SONG Jiancheng,NING Zhenbing,et al. Positioning algorithm of mine-used monorail crane locomotive based on strapdown inertial navigation[J]. Industry and Mine Automation,2021,47(1):49-54,86. doi: 10.13272/j.issn.1671-251x.2020080015 [7] 刘宏杰,张慧,张喜麟,等. 煤矿无轨胶轮车智能调度管理技术研究与应用[J]. 煤炭科学技术,2019,47(3):81-86.LIU Hongjie,ZHANG Hui,ZHANG Xilin,et al. Research and application of intelligent dispatching and management technology for coal mine trackless rubber-tyred vehicle[J]. Coal Science and Technology,2019,47(3):81-86. [8] 任文清,高小强. 智能矿山建设实践及关键技术[J]. 工矿自动化,2021,47(2):116-120.REN Wenqing,GAO Xiaoqiang. Construction practice and key technologies of intelligent mine[J]. Industry and Mine Automation,2021,47(2):116-120. [9] 袁晓明. 煤矿无轨辅助运输工艺和发展方向研究[J]. 煤炭工程,2019,51(5):1-5.YUAN Xiaoming. Analysis of coal mine trackless auxiliary transportation technology and the development direction[J]. Coal Engineering,2019,51(5):1-5. [10] 任志勇,石琴. 矿用电动无轨辅助运输装备发展现状及关键技术[J]. 煤炭科学技术,2021,49(7):118-123.REN Zhiyong,SHI Qin. Development status and key technologies on mine-used electric auxiliary trackless transport[J]. Coal Science and Technology,2021,49(7):118-123. [11] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. [12] WYLIE M P, HOLTZMAN J. Non-line of sight problem in mobile location estimation[J]. Proceedinga of IEEE International Conference Personal Communication, 1996: 827-831. DOI: 10.1109/icupc.1996.562692. [13] ROHRIG C, MULLER M. Indoor location tracking in non-line-of-sight environments using a IEEE 802.15. 4a wireless network[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009: 552-557. [14] 李静,刘琚. 用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J]. 通信学报,2005(1):130-135,141.LI Jing,LIU Ju. NLOS error mitigation in TOA using Kalman filter[J]. Journal of China Institute of Communications,2005(1):130-135,141. [15] WANN C D,HSUEH C S. Non-line of sight error mitigation in ultra-wideband ranging systems using biased Kalman filtering[J]. Journal of Signal Processing Systems,2011,64(3):389-400. doi: 10.1007/s11265-010-0493-6 [16] BAO L L, AHMCD K, TSUJI H. Mobile location estimator with NLOS mitigation using Kalman filter[C]. IEEE Wireless Communications and Nerworking, New Orleans, 2003: 1969-1973. [17] WANG Tiandong, CHEN Xi, GE Ning, et al. Error analysis and experimental study on indoor UWB TDOA localization with reference tag[C]. The 19th Asia-Pacific Conference on Communications, Denpasar, 2013: 505-508. [18] WANG F Q,ZHANG X F,WANG F. Root-MUSIC-based joint TOA and DOA estimation in IR-UWB[J]. Journal on Communications,2014,35(2):137-145. [19] 孙文,高林,魏平,等. 多普勒耦合下的声呐系统TOA多目标跟踪[J]. 信号处理,2018,34(7):757-765.SUN Wen,GAO Lin,WEI Ping. et al. Multiple target tracking for sonar system under range-doppler coupling[J]. Journal of Signal Processing,2018,34(7):757-765. [20] 盛坤鹏,王坚. 超宽带NLOS测距误差改正模型[J]. 北京测绘,2020,34(2):250-254.SHENG Kunpeng,WANG Jian. Error correction model of ultra-wideband NLOS ranging[J]. Beijing Surveying and Mapping,2020,34(2):250-254. [21] 温良. 基于非视距鉴别的井下精确定位技术研究[J]. 煤炭科学技术,2016,44(7):109-115.WEN Liang. Study on accurate positioning technology in underground mine based on non line of sight distinguishment[J]. Coal Science and Technology,2016,44(7):109-115. [22] 蒙静,张钦宇,张乃通,等. IR−UWB 穿墙测距误差研究[J]. 哈尔滨工业大学学报,2011,43(11):84-88.MENG Jing,ZHANG Qinyu,ZHANG Naitong,et al. Research on IR-UWB through wall ranging error[J]. Journal of Harbin Institute of Technology,2011,43(11):84-88. [23] 张然,宋来亮,冉龙俊. 一种基于非视距误差补偿的协同定位算法[J]. 北京航空航天大学学报,2017,43(7):1426-1432.ZHANG Ran,SONG Lailiang,RAN Longjun. A collaborative localization algorithm based on non-line-of-sight error compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(7):1426-1432. [24] 胡建华, 陈兴同, 曹德欣. 数值计算方法[M]. 徐州: 中国矿业大学出版社, 2008.HU Jianhua, CHEN Xingtong, CAO Dexin. Numerical calculation method[M]. Xuzhou: China University of Mining and Technology Press, 2008.