留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于小样本声音信号的托辊故障诊断方法

郝洪涛 邱园园 丁文捷

郝洪涛,邱园园,丁文捷. 一种基于小样本声音信号的托辊故障诊断方法[J]. 工矿自动化,2023,49(8):106-113.  doi: 10.13272/j.issn.1671-251x.2022120007
引用本文: 郝洪涛,邱园园,丁文捷. 一种基于小样本声音信号的托辊故障诊断方法[J]. 工矿自动化,2023,49(8):106-113.  doi: 10.13272/j.issn.1671-251x.2022120007
HAO Hongtao, QIU Yuanyuan, DING Wenjie. A fault diagnosis method for roller based on small sample sound signals[J]. Journal of Mine Automation,2023,49(8):106-113.  doi: 10.13272/j.issn.1671-251x.2022120007
Citation: HAO Hongtao, QIU Yuanyuan, DING Wenjie. A fault diagnosis method for roller based on small sample sound signals[J]. Journal of Mine Automation,2023,49(8):106-113.  doi: 10.13272/j.issn.1671-251x.2022120007

一种基于小样本声音信号的托辊故障诊断方法

doi: 10.13272/j.issn.1671-251x.2022120007
基金项目: 宁夏自然科学基金项目(2021AAC03046);2023年宁夏回族自治区重点研发计划项目(2023BDE03005) 。
详细信息
    作者简介:

    郝洪涛(1976—),男,宁夏银川人,教授,硕士研究生导师,博士,研究方向为机电设备智能运维、汽车先进制造技术,E-mail:haoht_03@126.com

  • 中图分类号: TD634

A fault diagnosis method for roller based on small sample sound signals

  • 摘要: 基于深度学习的故障诊断方法对数据集的质量有很高要求,需要大批量数据才能进行良好的模型训练,从而实现准确的故障诊断,而在实际应用中能够采集到的故障信号通常很有限。针对托辊故障声音信号获取困难、样本量少,导致智能故障诊断方法性能受限的问题,提出了一种基于小样本声音信号的托辊故障诊断方法。使用特征转换方法将一维声音信号转换为二维时频图像,将频率域的特征融入进来,以提高数据集对故障特征的表达能力;提出了多种类型时频图结合的数据集扩充方法,将短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特−黄变换(HHT) 3种时频分析方法绘制的时频图相结合,以扩充数据集,增加数据样式;引入了深度迁移学习的思想,使用轴承数据集对模型进行预训练,然后使用托辊数据对预训练模型进行微调,以进一步提升模型的识别准确率。实验结果表明:多种类型时频图结合的数据集扩充方法能有效解决使用小样本数据训练模型时易过拟合的问题;使用迁移学习后,模型的测试准确率达98.81%,相较于不使用迁移学习时提升了7%,且没有出现过拟合现象,说明模型训练良好;相较于生成对抗网络扩充STFT时频图数据集+迁移学习的方法,多种类型时频图结合的数据集扩充+迁移学习的方法准确率提高了4%,且更容易实现,可解释性更强。

     

  • 图  1  不同时频图局部放大图对比

    Figure  1.  Comparison of partial enlarged images of different time-frequency images

    图  2  迁移学习与传统机器学习的区别

    Figure  2.  The difference between transfer learning and traditional machine learning

    图  3  托辊故障诊断流程

    Figure  3.  Flow of roller fault diagnosis

    图  4  多种类型时频图结合的数据集扩充方法

    Figure  4.  Dataset enhancements method combining multiple types of time-frequency images

    图  5  残差卷积神经网络结构

    Figure  5.  Structure of residual convolutional neural network

    图  6  故障诊断模型训练流程

    Figure  6.  Training process of fault diagnosis model

    图  7  托辊故障模拟平台

    Figure  7.  Roller fault simulation platform

    图  8  轴承故障综合模拟器

    Figure  8.  Bearing fault comprehensive simulation test bench

    图  9  训练准确率及损失变化曲线

    Figure  9.  Training accuracy and loss change curves

    图  10  模型测试混淆矩阵

    Figure  10.  Model testing confusion matrix

    表  1  时频分析方法的主要参数

    Table  1.   Main parameters of time-frequency analysis methods

    时频分析方法参数名称参数
    短时傅里叶变换窗类型汉宁窗
    窗长6 000
    窗之间重叠点数3 000
    窗内离散傅里叶变换点数3 000
    连续小波变换母小波函数Amor小波
    下载: 导出CSV

    表  2  残差卷积神经网络参数

    Table  2.   Parameters of residual convolutional neural network

    名称类型描述输出特征大小
    Conv1卷积层64个7×7卷积核,步长为2;
    激活函数为ReLU;批量归一化
    112×112×64
    M1最大池化层3×3池化核,步长为256×56×64
    Conv2卷积层64个3×3卷积核,步长为2;
    激活函数为ReLU
    56×56×64
    Conv3卷积层64个3×3卷积核,步长为2;
    激活函数为ReLU;批量归一化
    56×56×64
    Add加法将M1和Conv3的输出按元素相加56×56×64
    Conv4卷积层128个3×3卷积核,步长为2;
    激活函数为ReLU
    28×28×128
    M2最大池化层3×3池化核,步长为214×14×128
    FC1全连接层128个节点;激活函数为ReLU1×1×128
    FC2全连接层5/4个节点;激活函数为Softmax1×1×5/1×1×4
    下载: 导出CSV

    表  3  托辊数据集

    Table  3.   Roller dataset

    数据集分析方法每类故障所用图像张数
    训练验证测试
    TG−1STFT11514
    TG−2CWT11514
    TG−3HHT11514
    TG−4STFT,CWT221028
    TG−5STFT,HHT221028
    TG−6CWT,HHT221028
    TG−7STFT,CWT,HHT341442
    下载: 导出CSV

    表  4  不同托辊数据集训练RCNN的结果

    Table  4.   The results of training RCNN using different roller datasets %

    数据集验证准确率测试准确率
    TG−110069.64
    TG−296.0075.00
    TG−310062.50
    TG−487.5080.35
    TG−587.5082.14
    TG−690.0079.46
    TG−789.2991.07
    下载: 导出CSV

    表  5  轴承结构参数

    Table  5.   Structural parameters of bearing

    轴承型号轴承节径/mm滚子直径/mm滚子个数接触角/(°)
    ER−12K33.57.980
    下载: 导出CSV

    表  6  时频图原图与遮挡灵敏度图对比

    Table  6.   Comparison between the original time-frequency images and the occlusion sensitivity images

    托辊状态STFTCWTHHT
    时频图原图遮挡灵敏度图时频图原图遮挡灵敏度图时频图原图遮挡灵敏度图
    正常托辊
    托辊轴承
    滚珠缺失
    托辊掺沙
    托辊卡滞
    下载: 导出CSV

    表  7  不同方法实验结果对比

    Table  7.   Comparison of experimental results of different methods

    方法方法描述准确率/%
    文献[24]一维信号+一维卷积神经网络59.38
    文献[25]STFT时频图数据集+迁移AlexNet76.79
    文献[12]生成对抗网络扩充STFT时频图数据集+迁移学习94.35
    本文方法多种类型时频图结合的数据集扩充+迁移学习98.81
    下载: 导出CSV
  • [1] 焦贺彬. 煤矿带式输送机智能化安全监测系统研究[J]. 煤矿机械,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058

    JIAO Hebin. Research on intelligent safety monitoring system of belt conveyor in coal mine[J]. Coal Mine Machinery,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058
    [2] 付朕. 矿用带式输送机托辊远程故障诊断系统[D]. 徐州: 中国矿业大学, 2020.

    FU Zhen. Remote fault diagnosis system of mine belt conveyor idler[D]. Xuzhou: China University of Mining and Technology, 2020.
    [3] 邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]. 南京: 东南大学, 2019.

    SHAO Siyu. Methodologies for fault diagnosis of rotary machine based on deep learning[D]. Nanjing: Southeast University, 2019.
    [4] 吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32.

    WU Wenzhen,CHENG Jiming,LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.
    [5] 贺志军,李军霞,张伟,等. 基于MFCC 特征和GWO−SVM的托辊故障诊断[J]. 机床与液压,2022,50(15):188-193.

    HE Zhijun,LI Junxia,ZHANG Wei,et al. Roller fault diagnosis based on MFCC feature and GWO-SVM[J]. Machine Tool & Hydraulics,2022,50(15):188-193.
    [6] 陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004

    CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
    [7] WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi: 10.1109/TIE.2017.2774777
    [8] 宁夏大学. 带式输送机故障巡检载具及其控制系统和控制方法: CN201911098745.5[P]. 2019-11-12.

    Ningxia University. Belt conveyor fault inspection vehicle and its control system and control method: CN201911098745.5[P]. 2019-11-12.
    [9] WANG Zirui,WANG Jun,WANG Youren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing,2018,310(8):213-222.
    [10] DING Yu,MA Liang,MA Jian,et al. A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions[J]. IEEE Access,2019,7:149736-149749. doi: 10.1109/ACCESS.2019.2947194
    [11] 何强,唐向红,李传江,等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004

    HE Qiang,TANG Xianghong,LI Chuanjiang,et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004
    [12] 吴定会,方钦,吴楚宜. 基于数据生成与迁移学习的轴承小样本故障诊断[J]. 机械传动,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023

    WU Dinghui,FANG Qin,WU Chuyi. Bearing small sample fault diagnosis based on data generation and transfer learning[J]. Journal of Mechanical Transmission,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023
    [13] 蒋杰. 基于深度学习的车型识别算法研究[D]. 北京: 北方工业大学, 2018.

    JIANG Jie. Vehicle recognition algorithm based on deep learning[D]. Beijing: North China University of Technology, 2018.
    [14] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2022-11-25].https://arxiv.org/abs/1710.09412.
    [15] DVORNIK N, MAIRAL J, SCHMID C. Modeling visual context is key to augmenting object detection datasets[EB/OL]. [2022-11-25]. https://arxiv.org/abs/1807.07428.
    [16] LEE W J,WU Haiyue,HUANG Aihua,et al. Learning via acceleration spectrograms of a DC motor system with application to condition monitoring[J]. The International Journal of Advanced Manufacturing Technology,2020,106(3/4):1-14.
    [17] BERA A, DUTTA A, DHARA A K. Deep learning based fault classification algorithm for roller bearings using time-frequency localized features[C]. International Conference on Computing, Communication, and Intelligent Systems, Greater Noida, 2021.
    [18] LI Pengfei,YUAN Hejin,WANG Yu,et al. Pumping unit fault analysis method based on wavelet transform time-frequency diagram and CNN[J]. International Core Journal of Engineering,2020,6(1):182-188.
    [19] XU Yang, LI Zhixiong, WANG Shuqing, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169(6). DOI: 10.1016/j.measurement.2020.108502.
    [20] YUAN Zhuang, ZHANG Laibin, DUAN Lixiang, et al. Intelligent fault diagnosis of rolling element bearings based on HHT and CNN[C]. Prognostics and System Health Management Conference, Chongqing, 2018.
    [21] PHAM M T, KIM J M, KIM C H. Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram[J]. Applied Sciences, 2020, 10(18). DOI: 10.3390/app10186385.
    [22] HE Zhiyi,SHAO Haidong,ZHANG Xiaoyang,et al. Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples[J]. IEEE Access,2019,7:115368-115377. doi: 10.1109/ACCESS.2019.2936243
    [23] WANG Chongyu,XIE Yonghui,ZHANG Di. Deep learning for bearing fault diagnosis under different working loads and non-fault location point[J]. Journal of Low Frequency Noise,Vibration and Active Control,2021,40(1):588-600. doi: 10.1177/1461348419889511
    [24] WANG Xin, MAO Dongxing, LI Xiaodong. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173. DOI: 10.1016/j.measurement.2020.108518.
    [25] MINERVINI M, HAUSMSN S, FROSINI L, et al. Transfer learning technique for automatic bearing fault diagnosis in induction motors[C]. IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Dallas, 2021.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  678
  • HTML全文浏览量:  54
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-08-12
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回