A fault diagnosis method for roller based on small sample sound signals
-
摘要: 基于深度学习的故障诊断方法对数据集的质量有很高要求,需要大批量数据才能进行良好的模型训练,从而实现准确的故障诊断,而在实际应用中能够采集到的故障信号通常很有限。针对托辊故障声音信号获取困难、样本量少,导致智能故障诊断方法性能受限的问题,提出了一种基于小样本声音信号的托辊故障诊断方法。使用特征转换方法将一维声音信号转换为二维时频图像,将频率域的特征融入进来,以提高数据集对故障特征的表达能力;提出了多种类型时频图结合的数据集扩充方法,将短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特−黄变换(HHT) 3种时频分析方法绘制的时频图相结合,以扩充数据集,增加数据样式;引入了深度迁移学习的思想,使用轴承数据集对模型进行预训练,然后使用托辊数据对预训练模型进行微调,以进一步提升模型的识别准确率。实验结果表明:多种类型时频图结合的数据集扩充方法能有效解决使用小样本数据训练模型时易过拟合的问题;使用迁移学习后,模型的测试准确率达98.81%,相较于不使用迁移学习时提升了7%,且没有出现过拟合现象,说明模型训练良好;相较于生成对抗网络扩充STFT时频图数据集+迁移学习的方法,多种类型时频图结合的数据集扩充+迁移学习的方法准确率提高了4%,且更容易实现,可解释性更强。Abstract: Fault diagnosis methods based on deep learning have high requirements for the quality of the dataset, requiring a large amount of data for good model training to achieve accurate fault diagnosis. However, the fault signals that can be collected in practical applications are usually limited. A method for diagnosing roller faults based on small sample sound signals is proposed to address the problem of limited performance of intelligent fault diagnosis methods due to the difficulty in obtaining sound signals for roller faults and the small sample size. The feature transformation method is used to convert one-dimensional sound signals into two-dimensional time-frequency images, incorporating features from the frequency domain to improve the dataset's capability to express fault features. A dataset expansion method combining multiple types of time-frequency maps has been proposed. The method combines time-frequency maps drawn by three time-frequency analysis methods: short time fourier transform (STFT), continuous wavelet transform (CWT), and Hilbert Huang transform (HHT) to expand the dataset and increase data styles. The concept of deep transfer learning is introduced, using bearing datasets to pre-train the model, and then using roller data to fine-tune the pre-trained model to further improve the recognition accuracy of the model. The experimental results show that the dataset expansion method combining multiple types of time-frequency maps can effectively solve the problem of overfitting when training models with small sample data. After using transfer learning, the testing accuracy of the model reaches 98.81%, an improvement of 7% compared to not using transfer learning. There was no overfitting phenomenon, indicating that the model is well-trained. Compared to the method of generating adversarial networks to expand the STFT time-frequency map dataset and transfer learning, the method of dataset expansion by combining multiple types of time frequency maps and transfer learning has an accuracy improvement of 4%. It is easier to implement, and has stronger interpretability.
-
Key words:
- belt conveyor /
- roller /
- fault diagnosis /
- small sample /
- time-frequency image /
- dataset expansion /
- transfer learning
-
表 1 时频分析方法的主要参数
Table 1. Main parameters of time-frequency analysis methods
时频分析方法 参数名称 参数 短时傅里叶变换 窗类型 汉宁窗 窗长 6 000 窗之间重叠点数 3 000 窗内离散傅里叶变换点数 3 000 连续小波变换 母小波函数 Amor小波 表 2 残差卷积神经网络参数
Table 2. Parameters of residual convolutional neural network
名称 类型 描述 输出特征大小 Conv1 卷积层 64个7×7卷积核,步长为2;
激活函数为ReLU;批量归一化112×112×64 M1 最大池化层 3×3池化核,步长为2 56×56×64 Conv2 卷积层 64个3×3卷积核,步长为2;
激活函数为ReLU56×56×64 Conv3 卷积层 64个3×3卷积核,步长为2;
激活函数为ReLU;批量归一化56×56×64 Add 加法 将M1和Conv3的输出按元素相加 56×56×64 Conv4 卷积层 128个3×3卷积核,步长为2;
激活函数为ReLU28×28×128 M2 最大池化层 3×3池化核,步长为2 14×14×128 FC1 全连接层 128个节点;激活函数为ReLU 1×1×128 FC2 全连接层 5/4个节点;激活函数为Softmax 1×1×5/1×1×4 表 3 托辊数据集
Table 3. Roller dataset
数据集 分析方法 每类故障所用图像张数 训练 验证 测试 TG−1 STFT 11 5 14 TG−2 CWT 11 5 14 TG−3 HHT 11 5 14 TG−4 STFT,CWT 22 10 28 TG−5 STFT,HHT 22 10 28 TG−6 CWT,HHT 22 10 28 TG−7 STFT,CWT,HHT 34 14 42 表 4 不同托辊数据集训练RCNN的结果
Table 4. The results of training RCNN using different roller datasets
% 数据集 验证准确率 测试准确率 TG−1 100 69.64 TG−2 96.00 75.00 TG−3 100 62.50 TG−4 87.50 80.35 TG−5 87.50 82.14 TG−6 90.00 79.46 TG−7 89.29 91.07 表 5 轴承结构参数
Table 5. Structural parameters of bearing
轴承型号 轴承节径/mm 滚子直径/mm 滚子个数 接触角/(°) ER−12K 33.5 7.9 8 0 表 6 时频图原图与遮挡灵敏度图对比
Table 6. Comparison between the original time-frequency images and the occlusion sensitivity images
托辊状态 STFT CWT HHT 时频图原图 遮挡灵敏度图 时频图原图 遮挡灵敏度图 时频图原图 遮挡灵敏度图 正常托辊 托辊轴承
滚珠缺失托辊掺沙 托辊卡滞 -
[1] 焦贺彬. 煤矿带式输送机智能化安全监测系统研究[J]. 煤矿机械,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058JIAO Hebin. Research on intelligent safety monitoring system of belt conveyor in coal mine[J]. Coal Mine Machinery,2020,41(10):182-185. doi: 10.13436/j.mkjx.202010058 [2] 付朕. 矿用带式输送机托辊远程故障诊断系统[D]. 徐州: 中国矿业大学, 2020.FU Zhen. Remote fault diagnosis system of mine belt conveyor idler[D]. Xuzhou: China University of Mining and Technology, 2020. [3] 邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]. 南京: 东南大学, 2019.SHAO Siyu. Methodologies for fault diagnosis of rotary machine based on deep learning[D]. Nanjing: Southeast University, 2019. [4] 吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32.WU Wenzhen,CHENG Jiming,LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32. [5] 贺志军,李军霞,张伟,等. 基于MFCC 特征和GWO−SVM的托辊故障诊断[J]. 机床与液压,2022,50(15):188-193.HE Zhijun,LI Junxia,ZHANG Wei,et al. Roller fault diagnosis based on MFCC feature and GWO-SVM[J]. Machine Tool & Hydraulics,2022,50(15):188-193. [6] 陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004 [7] WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi: 10.1109/TIE.2017.2774777 [8] 宁夏大学. 带式输送机故障巡检载具及其控制系统和控制方法: CN201911098745.5[P]. 2019-11-12.Ningxia University. Belt conveyor fault inspection vehicle and its control system and control method: CN201911098745.5[P]. 2019-11-12. [9] WANG Zirui,WANG Jun,WANG Youren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing,2018,310(8):213-222. [10] DING Yu,MA Liang,MA Jian,et al. A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions[J]. IEEE Access,2019,7:149736-149749. doi: 10.1109/ACCESS.2019.2947194 [11] 何强,唐向红,李传江,等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004HE Qiang,TANG Xianghong,LI Chuanjiang,et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering,2021,32(10):1164-1171,1180. doi: 10.3969/j.issn.1004-132X.2021.10.004 [12] 吴定会,方钦,吴楚宜. 基于数据生成与迁移学习的轴承小样本故障诊断[J]. 机械传动,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023WU Dinghui,FANG Qin,WU Chuyi. Bearing small sample fault diagnosis based on data generation and transfer learning[J]. Journal of Mechanical Transmission,2020,44(11):139-144. doi: 10.16578/j.issn.1004.2539.2020.11.023 [13] 蒋杰. 基于深度学习的车型识别算法研究[D]. 北京: 北方工业大学, 2018.JIANG Jie. Vehicle recognition algorithm based on deep learning[D]. Beijing: North China University of Technology, 2018. [14] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2022-11-25].https://arxiv.org/abs/1710.09412. [15] DVORNIK N, MAIRAL J, SCHMID C. Modeling visual context is key to augmenting object detection datasets[EB/OL]. [2022-11-25]. https://arxiv.org/abs/1807.07428. [16] LEE W J,WU Haiyue,HUANG Aihua,et al. Learning via acceleration spectrograms of a DC motor system with application to condition monitoring[J]. The International Journal of Advanced Manufacturing Technology,2020,106(3/4):1-14. [17] BERA A, DUTTA A, DHARA A K. Deep learning based fault classification algorithm for roller bearings using time-frequency localized features[C]. International Conference on Computing, Communication, and Intelligent Systems, Greater Noida, 2021. [18] LI Pengfei,YUAN Hejin,WANG Yu,et al. Pumping unit fault analysis method based on wavelet transform time-frequency diagram and CNN[J]. International Core Journal of Engineering,2020,6(1):182-188. [19] XU Yang, LI Zhixiong, WANG Shuqing, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169(6). DOI: 10.1016/j.measurement.2020.108502. [20] YUAN Zhuang, ZHANG Laibin, DUAN Lixiang, et al. Intelligent fault diagnosis of rolling element bearings based on HHT and CNN[C]. Prognostics and System Health Management Conference, Chongqing, 2018. [21] PHAM M T, KIM J M, KIM C H. Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram[J]. Applied Sciences, 2020, 10(18). DOI: 10.3390/app10186385. [22] HE Zhiyi,SHAO Haidong,ZHANG Xiaoyang,et al. Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples[J]. IEEE Access,2019,7:115368-115377. doi: 10.1109/ACCESS.2019.2936243 [23] WANG Chongyu,XIE Yonghui,ZHANG Di. Deep learning for bearing fault diagnosis under different working loads and non-fault location point[J]. Journal of Low Frequency Noise,Vibration and Active Control,2021,40(1):588-600. doi: 10.1177/1461348419889511 [24] WANG Xin, MAO Dongxing, LI Xiaodong. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173. DOI: 10.1016/j.measurement.2020.108518. [25] MINERVINI M, HAUSMSN S, FROSINI L, et al. Transfer learning technique for automatic bearing fault diagnosis in induction motors[C]. IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Dallas, 2021.