留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双激光雷达的带式输送机煤流量检测系统

于海里 孙立超 左胜 陈大伟 曾祥玉 杜垣江

于海里,孙立超,左胜,等. 基于双激光雷达的带式输送机煤流量检测系统[J]. 工矿自动化,2023,49(7):27-34, 59.  doi: 10.13272/j.issn.1671-251x.2022120004
引用本文: 于海里,孙立超,左胜,等. 基于双激光雷达的带式输送机煤流量检测系统[J]. 工矿自动化,2023,49(7):27-34, 59.  doi: 10.13272/j.issn.1671-251x.2022120004
YU Haili, SUN Lichao, ZUO Sheng, et al. Coal flow detection system for belt conveyor based on dual lidar[J]. Journal of Mine Automation,2023,49(7):27-34, 59.  doi: 10.13272/j.issn.1671-251x.2022120004
Citation: YU Haili, SUN Lichao, ZUO Sheng, et al. Coal flow detection system for belt conveyor based on dual lidar[J]. Journal of Mine Automation,2023,49(7):27-34, 59.  doi: 10.13272/j.issn.1671-251x.2022120004

基于双激光雷达的带式输送机煤流量检测系统

doi: 10.13272/j.issn.1671-251x.2022120004
基金项目: 国家自然科学基金项目(51904142)。
详细信息
    作者简介:

    于海里(1981—),男,内蒙古赤峰人,高级工程师,主要从事露天矿建设和智能化研究工作,E-mail:147218050@qq.com

    通讯作者:

    陈大伟(1980—),男,辽宁凌源人,高级工程师,主要从事矿山智能化工程设计工作,E-mail:13604907048@163.com

  • 中图分类号: TD634.1

Coal flow detection system for belt conveyor based on dual lidar

  • 摘要: 带式输送机煤流运输过程中由于堆积角的存在,使得煤流形状呈近似三角形,易出现检测盲区。针对该问题,提出了一种基于双激光雷达的带式输送机煤流量检测系统。将2个单线激光雷达分别放置在带式输送机上方左右两侧,各测量半个区域内的煤流外轮廓特征点,通过融合算法对左右区域内的煤流外轮廓特征点进行融合,再通过最小二乘多项式拟合算法解算出整个区域内的煤流外轮廓,从而实现对煤流轮廓的无盲区测量。使用光电编码器实时检测输送带运行速度,采用梯形面积累计法计算煤流断面面积,采用面元积分法计算带式输送机的煤流量。现场试验结果表明:无煤料偏置时,单/双激光雷达扫描结果基本一致,系统测量误差为2%~3%,满足煤流量检测要求;有煤料偏置时,基于单激光雷达的系统误差较大,无法满足煤流量检测要求,而基于双激光雷达的系统测量误差依然能够保持在2%~3%。提出了单/双激光雷达选择判据,得出存在煤料偏置或大块煤料的工况下,基于双激光雷达的带式输送机煤流量检测系统更加适用。

     

  • 图  1  基于单激光雷达的煤流量检测系统

    Figure  1.  Coal flow detection system based on single lidar

    图  2  激光雷达检测盲区

    Figure  2.  Blind spot in lidar detection

    图  3  基于双激光雷达的煤流量检测系统

    Figure  3.  Coal flow detection system based on dual lidar

    图  4  带式输送机煤流量检测系统坐标系

    Figure  4.  Coordinate system of coal flow detection system for belt conveyor

    图  5  激光雷达检测盲区判别

    Figure  5.  Identification of blind spot in lidar detection

    图  6  特征点融合流程

    Figure  6.  Feature point fusion process

    图  7  梯形面积累计法原理

    Figure  7.  Principle of trapezoidal area accumulation method

    图  8  煤料瞬时流量计算模型

    Figure  8.  Calculation model for instantaneous coal flow

    图  9  基于双激光雷达的带式输送机煤流量检测系统现场试验

    Figure  9.  Field test of coal flow detection system for belt conveyor based on dual lidar

    图  10  单/双激光雷达扫描结果

    Figure  10.  Single/dual lidar scanning results

    图  11  不同工况下的测量误差

    Figure  11.  Measurement error under different working conditions

    图  12  存在煤料偏置时单激光雷达安装高度

    Figure  12.  Installation height of a single lidar under coal bias condition

    图  13  存在大块煤料时单激光雷达安装高度

    Figure  13.  Installation height of a single lidar in the presence of large blocks of coal

    Step1 分别初始化左右侧激光雷达扫描区间[θ11θ1n]和[θ21θ2n],扫描区间根据激光雷达所在位置和输送带宽度决定;
    Step2for(i=1;ini++)
    Step3读取第i个点的坐标(yizi);
    Step4根据式(5)判别第i个点和第i−1个点Y 轴坐标差值:if |yiyi−1|≥δthen i=0;break;else 将第i 个点的坐标(yizi)存入缓存区 Coordinate_L[ ],Coordinate_R[ ];
    Step5判别第i个点是否超出扫描区间:if θ1iθ1n || θ1iθ11then i=1;break;
    else 对缓存区坐标进行坐标变换,将2个激光雷达的数据转换到同一个坐标系内;
    Step6将缓存区内左右激光雷达坐标变换后的数据按照Y 轴坐标从小到大排序,得到最终的特征点融合数据;
    Step7end
    完成1次数据融合。
    下载: 导出CSV

    表  1  无煤料偏置工况下检测结果对比

    Table  1.   Comparison of detection results under non coal bias working condition

    试验序号带速/
    (m·s−1)
    标准体积/m3检测结果/m3
    单激光
    雷达
    双激光
    雷达
    1221.941.95
    2243.903.88
    3265.855.85
    4287.837.82
    52109.759.73
    6321.961.95
    7343.883.88
    8365.855.86
    9387.807.81
    103109.729.78
    11421.951.95
    12443.903.90
    13465.845.88
    14487.777.83
    154109.749.74
    下载: 导出CSV

    表  2  有煤料偏置工况下检测结果对比

    Table  2.   Comparison of detection results under coal bias working condition

    试验序号带速/
    (m·s−1)
    标准体积/m3测量结果/m3
    单激光
    雷达
    双激光
    雷达
    1221.231.95
    2242.633.90
    3263.785.86
    4285.267.79
    52106.079.72
    6321.351.94
    7342.643.91
    8363.685.86
    9385.017.80
    103106.429.78
    11421.361.95
    12442.653.89
    13463.775.88
    14485.057.78
    154106.439.78
    下载: 导出CSV
  • [1] 冯宝忠,兰春森. 带式输送机智能化关键技术探讨及发展展望[J]. 智能矿山,2022,3(7):80-84.

    FENG Baozhong,LAN Chunsen. Discussion and development prospect of intelligent key technology of belt conveyor[J]. Journal of Intelligent Mine,2022,3(7):80-84.
    [2] 王忠鑫,辛凤阳,陈洪亮,等. 我国露天矿智能运输技术现状及发展趋势[J]. 工矿自动化,2022,48(6):15-26.

    WANG Zhongxin,XIN Fengyang,CHEN Hongliang,et al. Current status and development trend of intelligent transportation technology in China's open-pit mines[J]. Journal of Mine Automation,2022,48(6):15-26.
    [3] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83.
    [4] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [5] 王文清,田柏林,冯海明,等. 基于激光测距矿用带式输送机多参数检测方法研究[J]. 煤炭科学技术,2020,48(8):131-138. doi: 10.13199/j.cnki.cst.2020.08.016

    WANG Wenqing,TIAN Bailin,FENG Haiming,et al. Research on multi-parameters detection method of mine belt conveyor based on laser ranging[J]. Coal Science and Technology,2020,48(8):131-138. doi: 10.13199/j.cnki.cst.2020.08.016
    [6] 陈文钰. 电子皮带秤的误差分析与维护[J]. 计量与测试技术,2022,49(2):63-65.

    CHEN Wenyu. Error analysis and maintenance of electronic belt scale[J]. Metrology & Measurement Technique,2022,49(2):63-65.
    [7] 任凤国,刘学红,任安祥,等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27.

    REN Fengguo,LIU Xuehong,REN Anxiang,et al. Research on improving measurement stability of mine-used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27.
    [8] 杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174.

    YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174.
    [9] 王凯. 基于超声阵列的输送带动态煤量检测方法研究[D]. 银川: 宁夏大学, 2022.

    WANG Kai. Research on dynamic coal weight measurement method of belt conveyor based on ultrasonic array[D]. Yinchuan: Ningxia University, 2022.
    [10] 陈湘源. 基于超声波的带式输送机多点煤流量监测系统设计[J]. 工矿自动化,2017,43(2):75-78.

    CHEN Xiangyuan. Design of multipoint coal flow monitoring system of belt conveyor based on ultrasonic[J]. Industry and Mine Automation,2017,43(2):75-78.
    [11] 姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.

    JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
    [12] 王利栋. 综放工作面放煤量激光扫描监测三维重建方法研究[J]. 煤炭工程,2022,54(5):125-130.

    WANG Lidong. Three-dimensional reconstruction method of coal flow laser scanning monitoring[J]. Coal Engineering,2022,54(5):125-130.
    [13] 杨育坤. 激光测距原理的带式输送机监控系统中煤流量检测的研究[D]. 天津: 天津工业大学, 2019.

    YANG Yukun. Research on coal flow measurement in belt conveyor monitoring system based on laser ranging principle[D]. Tianjin: Tiangong University, 2019.
    [14] 苗长云,杨育坤,厉振宇. 基于激光测距原理的带式输送机监控系统对煤流量的检测[J]. 天津工业大学学报,2019,38(5):70-75.

    MIAO Changyun,YANG Yukun,LI Zhenyu. Detection of coal flow based on laser ranging principle in belt conveyor monitoring system[J]. Journal of Tiangong University,2019,38(5):70-75.
    [15] 胡而已. 融合激光扫描与机器视觉的煤流量测量研究[J]. 煤炭工程,2021,53(11):146-151.

    HU Eryi. Coal flow measurement based on laser scanning and machine vision[J]. Coal Engineering,2021,53(11):146-151.
    [16] 冯媛. 融合感知的带式输送机煤流量监控系统[D]. 淮南: 安徽理工大学, 2020.

    FENG Yuan. Coal flow monitoring system of belt conveyor with integrated perception[D]. Huainan: Anhui University of Science and Technology, 2020.
    [17] 张耀. 煤矿运输系统煤量激光三角法监测技术研究[D]. 徐州: 中国矿业大学, 2022.

    ZHANG Yao. Study on monitoring technology of coal quantity by laser triangulation in coal mine transportation system[D]. Xuzhou: China University of Mining and Technology, 2022.
    [18] 胡而已,张耀. 激光煤流量测量中光斑条纹过饱和问题研究[J]. 煤炭科学技术,2023,51(2):377-389.

    HU Eryi,ZHANG Yao. Laser speckle stripes supersaturated problems in coal flow measurement research[J]. Coal Science and Technology,2023,51(2):377-389.
    [19] 刘新龙,胡平,吕晨辉,等. 基于激光红外线扫描的带式输送机煤流量实时检测技术[J]. 煤炭技术,2022,41(1):217-219.

    LIU Xinlong,HU Ping,LYU Chenhui,et al. Real time detection technology of coal flow rate of belt conveyor based on laser infrared scanning[J]. Coal Technology,2022,41(1):217-219.
    [20] 曾飞,吴青,初秀民,等. 带式输送机物料瞬时流量激光测量方法[J]. 湖南大学学报(自然科学版),2015,42(2):40-47.

    ZENG Fei,WU Qing,CHU Xiumin,et al. Measurement of material instantaneous flow on belt conveyors based on laser scanning[J]. Journal of Hunan University (Natural Sciences),2015,42(2):40-47.
    [21] 吕剑铎,贺振华,王新宇. 基于激光雷达的带式输送机煤量检测技术[J]. 煤炭工程,2021,53(增刊1):54-59.

    LYU Jianduo,HE Zhenhua,WANG Xinyu. Coal quantity detection of belt conveyor based on laser radar[J]. Coal Engineering,2021,53(S1):54-59.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  74
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2023-07-18
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回