留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯算法优化的CatBoost矿压显现预测

柴敬 张锐新 欧阳一博 张丁丁 王润沛 田志诚 刘泓瑞 韩志成

柴敬,张锐新,欧阳一博,等. 基于贝叶斯算法优化的CatBoost矿压显现预测[J]. 工矿自动化,2023,49(7):83-91.  doi: 10.13272/j.issn.1671-251x.2022110065
引用本文: 柴敬,张锐新,欧阳一博,等. 基于贝叶斯算法优化的CatBoost矿压显现预测[J]. 工矿自动化,2023,49(7):83-91.  doi: 10.13272/j.issn.1671-251x.2022110065
CHAI Jing, ZHANG Ruixin, OUYANG Yibo, et al. CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization[J]. Journal of Mine Automation,2023,49(7):83-91.  doi: 10.13272/j.issn.1671-251x.2022110065
Citation: CHAI Jing, ZHANG Ruixin, OUYANG Yibo, et al. CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization[J]. Journal of Mine Automation,2023,49(7):83-91.  doi: 10.13272/j.issn.1671-251x.2022110065

基于贝叶斯算法优化的CatBoost矿压显现预测

doi: 10.13272/j.issn.1671-251x.2022110065
基金项目: 国家自然科学基金资助项目(41027002,51804244)。
详细信息
    作者简介:

    柴敬(1964—),男,宁夏平罗人,教授,博士研究生导师,主要研究方向为采矿工程、实验岩石力学及光纤传感,E-mail:chaij@xust.edu.cn

  • 中图分类号: TD323

CatBoost mine pressure appearance prediction based on Bayesian algorithm optimization

  • 摘要: 通过传统的监测手段获取矿压数据并采用统计学或机器学习算法对矿压进行预测已不能满足矿山智能化发展要求,需要寻求新的方法提升矿压数据监测及矿压预测的准确性和实时性。基于三维相似物理模型试验,搭建分布式光纤监测系统,沿模型走向和高度2个方向预埋分布式光纤,在模拟工作面开采过程中采集来压数据,并引入光纤布里渊频移平均变化度作为判断是否来压的指标;通过对光纤监测数据进行噪声去除、归一化及相空间重构等预处理,将一维初始监测数据转换为三维数据;使用贝叶斯算法对CatBoost算法进行迭代参数寻优,在达到最大迭代次数后将最优参数组合装载到CatBoost算法中,通过训练得到矿压显现预测模型。结果表明:贝叶斯算法比传统网格搜索法的迭代次数更少、误差更小;与随机森林(RF)、梯度提升决策树(GBDT)和极值梯度提升树(XGBoost)算法相比,CatBoost算法的预测精度更高、泛化能力更强;基于贝叶斯算法优化的CatBoost矿压显现预测模型能准确预测出测试集中的3次来压,且整体预测趋势与实测值较为吻合,平均绝对误差为0.009 1,均方根误差为0.007 7,决定系数为0.933 9。

     

  • 图  1  岩性分布

    Figure  1.  Lithology distribution

    图  2  工作面布局及推进方向

    Figure  2.  Working face layout and advancing direction

    图  3  分布式光纤监测系统布置

    Figure  3.  Layout of distributed optical fiber monitoring system

    图  4  矿压显现预测流程

    Figure  4.  Flow of mine pressure appearance prediction

    图  5  EMD分解效果

    Figure  5.  EMD decomposition effect

    图  6  工作面开采全过程矿压曲线

    Figure  6.  Mine pressure curve of the whole process of working face mining

    图  7  贝叶斯算法参数寻优结果

    Figure  7.  Parameter optimization results of Bayesian algorithm

    图  8  光纤布里渊频移平均变化度实测值与预测值

    Figure  8.  Measured values and predicted values of optical fiber Brillouin frequency shift mean variation degree

    图  9  不同算法泛化能力对比

    Figure  9.  Comparison of generalization ability of the different algorithms

    表  1  三维相似物理模型基本参数

    Table  1.   Basic parameters of the 3D physical similarity model

    参数参数
    长度/mm3600 宽度/mm2000
    高度/mm2000开挖步数54
    煤层厚度/mm100开挖步距/mm50
    几何相似比1∶200开挖时间间隔/h0.5
    容重相似比1.56∶1应力相似比380∶1
    下载: 导出CSV

    表  2  光纤布里渊频移平均变化度相空间重构

    Table  2.   Phase space reconstruction of optical fiber Brillouin frequency shift mean variation degree

    序号开挖
    距离
    /mm
    $ {x_1} $$ {x_2} $$ {x_3} $$ Y $序号开挖
    距离/mm
    $ {x_1} $$ {x_2} $$ {x_3} $$ Y $
    120000.0000260.0015790.002474 2715000.8640750.8388630.7213041.000 000
    22500.0000260.0015790.0024740.0021532815500.8388630.7213041.000 0000.869531
    33000.0015790.0024740.0021530.0013542916000.7213041.000 0000.8695310.413876
    43500.0024740.0021530.0013540.0021863016501.000 0000.8695310.4138760.574574
    54000.0021530.0013540.0021860.0195773117000.8695310.4138760.5745740.336719
    64500.0013540.0021860.0195770.0204043217500.4138760.5745740.3367190.422573
    75000.0021860.0195770.0204040.0158863318000.5745740.3367190.4225730.656925
    85500.0195770.0204040.0158860.0140983418500.3367190.4225730.6569250.544454
    96000.0204040.0158860.0140980.0289253519000.4225730.6569250.5444540.547804
    106500.0158860.0140980.0289250.0464073619500.6569250.5444540.5478040.572263
    117000.0140980.0289250.0464070.0278813720000.5444540.5478040.5722630.731946
    127500.0289250.0464070.0278810.0167083820500.5478040.5722630.7319460.453583
    138000.0464070.0278810.0167080.4521903921000.5722630.7319460.4535830.564985
    148500.0278810.0167080.4521900.4917974021500.7319460.4535830.5649850.815280
    159000.0167080.4521900.4917970.6892014122000.4535830.5649850.8152800.751002
    169500.4521900.4917970.6892010.5708644222500.5649850.8152800.7510020.745354
    1710000.4917970.6892010.5708640.5991834323000.8152800.7510020.7453540.692883
    1810500.6892010.5708640.5991830.6540414423500.7510020.7453540.6928830.796233
    1911000.5708640.5991830.6540410.4472534524000.7453540.6928830.7962330.940375
    2011500.5991830.6540410.4472530.7216254624500.6928830.7962330.9403750.840692
    2112000.6540410.4472530.7216250.6980594725000.7962330.9403750.8406920.722012
    2212500.4472530.7216250.6980590.7725444825500.9403750.8406920.7220120.673414
    2313000.7216250.6980590.7725440.6403614926000.8406920.7220120.6734140.593709
    2413500.6980590.7725440.6403610.8640755026500.7220120.6734140.5937090.473591
    2514000.7725440.6403610.8640750.8388635127000.6734140.5937090.4735910.394052
    2614500.6403610.8640750.8388630.721304
    下载: 导出CSV

    表  3  CatBoost算法参数

    Table  3.   Parameters of CatBoost algorithm

    参数名称作用默认值搜索范围
    iterations最大树数提升精度1 000[40,130]
    learning_rate学习率提升精度0.03[0.01,0.30]
    depth树的最大深度提升精度6[3,10]
    l2_leaf_regL2正则化正则化,减小过拟合3[1,10]
    下载: 导出CSV

    表  4  参数优化结果对比

    Table  4.   Comparison of the parameter optimization results

    优化方法迭代次数MAERMSE
    网格搜索法550.0730.089
    贝叶斯算法300.0650.079
    下载: 导出CSV

    表  5  不同算法性能指标对比

    Table  5.   Comparison of performance indicators of different algorithms

    算法RMSEMAER2
    RF0.017 90.013 50.874 6
    GBDT0.032 50.037 10.859 9
    XGBoost0.011 50.009 20.907 8
    CatBoost0.009 10.007 70.933 9
    下载: 导出CSV
  • [1] 袁亮. “煤炭精准开采背景下的矿井地质保障”专辑特邀主编致读者[J]. 煤炭学报,2019,44(8):2275-2276.

    YUAN Liang. Invited editor-in-chief of the album "Mine Geological Guarantee in the Context of Precise Coal Mining" to readers[J]. Journal of China Coal Society,2019,44(8):2275-2276.
    [2] 张俊文,钟帅,梁珠擎. 矿区生态环境“三位一体”治理技术研究[J]. 煤炭技术,2020,39(6):106-109.

    ZHANG Junwen,ZHONG Shuai,LIANG Zhuqing. Study on "trinity" governance technology of mining area ecological environment[J]. Coal Technology,2020,39(6):106-109.
    [3] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11-16.

    WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11-16.
    [4] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39-46.

    LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39-46.
    [5] 崔铁军,马云东. 基于泛函网络的周期来压预测方法研究[J]. 计算机科学,2013,40(增刊1):243-246.

    CUI Tiejun,MA Yundong. Prediction of periodic weighting based on optimized functional networks[J]. Computer Science,2013,40(S1):243-246.
    [6] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [7] 贾澎涛,苗云风. 基于堆叠LSTM的多源矿压预测模型分析[J]. 矿业研究与开发,2021,41(8):79-82.

    JIA Pengtao,MIAO Yunfeng. Multi-source mine pressure prediction model analysis based on stacked-LSTM[J]. Mining Research and Development,2021,41(8):79-82.
    [8] 贺超峰,华心祝,杨科,等. 基于BP神经网络的工作面周期来压预测[J]. 安徽理工大学学报(自然科学版),2012,32(1):59-63.

    HE Chaofeng,HUA Xinzhu,YANG Ke,et al. Forecast of periodic weighting in working face based on back-propagation neural network[J]. Journal of Anhui University of Science and Technology(Natural Science),2012,32(1):59-63.
    [9] 李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(增刊1):83-96. doi: 10.13225/j.cnki.jccs.2016.0852

    LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines:present status and future prospects[J]. Journal of China Coal Society,2017,42(S1):83-96. doi: 10.13225/j.cnki.jccs.2016.0852
    [10] 王恩元,李忠辉,李德行,等. 电磁辐射监测技术装备在煤与瓦斯突出监测预警中的应用[J]. 煤矿安全,2020,51(10):46-51.

    WANG Enyuan,LI Zhonghui,LI Dexing,et al. Application of electromagnetic radiation monitoring equipment in monitoring and warning of coal and gas outburst[J]. Safety in Coal Mines,2020,51(10):46-51.
    [11] 张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-48.

    ZHANG Pingsong,XU Shiang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-48.
    [12] CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test of mining based on optical fiber sensing technology detection[J]. Optical Fiber Technology,2019,48:84-94. doi: 10.1016/j.yofte.2018.12.026
    [13] VILLALBA S,CASAS J R. Application of optical fiber distributed sensing to health monitoring of concrete structures[J]. Mechanical Systems and Signal Processing,2013,39(1):441-451.
    [14] CHAPELEAU X,SEDRAN T,COTTINEAU L M,et al. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory[J]. Engineering Structures,2013,56:1751-1757. doi: 10.1016/j.engstruct.2013.07.005
    [15] 柴敬,霍晓斌,钱云云,等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018,43(增刊1):36-43.

    CHAI Jing,HUO Xiaobin,QIAN Yunyun,et al. Model test for evaluating deformation and weighting of overlying strata by distributed optical fiber sensing[J]. Journal of China Coal Society,2018,43(S1):36-43.
    [16] 冀汶莉,刘艺欣,柴敬,等. 基于随机森林的矿压预测方法[J]. 采矿与岩层控制工程学报,2021,3(3):71-81.

    JI Wenli,LIU Yixin,CHAI Jing,et al. Mine pressure prediction method based on random forest[J]. Journal of Mining and Strata Control Engineering,2021,3(3):71-81.
    [17] 王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安: 西安科技大学, 2020.

    WANG Runpei. Research on prediction of deformed mine pressure of overburden under distributed optical fiber monitoring based on machine learning[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [18] 柴敬,王润沛,杜文刚,等. 基于XGBoost的光纤监测矿压时序预测研究[J]. 采矿与岩层控制工程学报,2020,2(4):64-71.

    CHAI Jing,WANG Runpei,DU Wengang,et al. Study on time series prediction of rock pressure by XGBoost in optical fiber monitoring[J]. Journal of Mining and Strata Control Engineering,2020,2(4):64-71.
    [19] 董力铭,曾文治,雷国庆. 分类梯度提升算法(CatBoost)与蝙蝠算法(Bat)耦合建模预测中国西北部地区水面蒸发量[J]. 节水灌溉,2021(2):63-69.

    DONG Liming,ZENG Wenzhi,LEI Guoqing. Coupling CatBoost model with bat algorithm to simulate the pan evaporation in northwest China[J]. Water Saving Irrigation,2021(2):63-69.
    [20] 郭步豪. 基于梯度提升机器学习算法的ECG身份识别[D]. 长春: 吉林大学, 2020.

    GUO Buhao. ECG identity recognition based on gradient boosting machine learning algorithm[D]. Changchun: Jilin University, 2020.
    [21] 李晓花. 基于贝叶斯算法的网络安全评估模型研究[J]. 电子设计工程,2021,29(5):154-158,163.

    LI Xiaohua. Research on network security evaluation model based on Bayesian algorithm[J]. Electronic Design Engineering,2021,29(5):154-158,163.
    [22] 李叶紫,王振友,周怡璐,等. 基于贝叶斯最优化的Xgboost算法的改进及应用[J]. 广东工业大学学报,2018,35(1):23-28. doi: 10.12052/gdutxb.170124

    LI Yezi,WANG Zhenyou,ZHOU Yilu,et al. The improvement and application of Xgboost method based on Bayesian optimization[J]. Journal of Guangdong University of Technology,2018,35(1):23-28. doi: 10.12052/gdutxb.170124
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  55
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-07-28
  • 网络出版日期:  2023-08-07

目录

    /

    返回文章
    返回