留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向煤矿井下低光照图像的增强方法

孔二伟 张亚邦 李佳悦 王满利

孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69, 85.  doi: 10.13272/j.issn.1671-251x.2022110054
引用本文: 孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62-69, 85.  doi: 10.13272/j.issn.1671-251x.2022110054
KONG Erwei, ZHANG Yabang, LI Jiayue, et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69, 85.  doi: 10.13272/j.issn.1671-251x.2022110054
Citation: KONG Erwei, ZHANG Yabang, LI Jiayue, et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62-69, 85.  doi: 10.13272/j.issn.1671-251x.2022110054

面向煤矿井下低光照图像的增强方法

doi: 10.13272/j.issn.1671-251x.2022110054
基金项目: 国家自然科学基金项目(52074305);河南理工大学博士基金项目(B2021-64)。
详细信息
    作者简介:

    孔二伟(1982—),男,河南平顶山人,高级工程师,硕士,现主要从事电气工程方面的工作,E-mail:kongerwei1982@163.com

    通讯作者:

    李佳悦(1999—),女,山西运城人,硕士研究生,研究方向为图像处理、深度学习,E-mail:lijiayue0827@163.com

  • 中图分类号: TD67

An enhancement method for low light images in coal mines

  • 摘要: 煤矿井下照明有限,并且具有大量粉尘、雾气,使得采集到的图像对比度低、光照不均、细节信息弱,并含有大量噪声。基于传统模型的图像增强方法鲁棒性较差,常会引起图像过度增强和色彩失真;基于深度学习的图像增强方法大多没有考虑增强引起的噪声放大。针对上述问题,提出了一种面向煤矿井下低光照图像的增强方法。采用卷积神经网络构建图像增强网络,该网络包括特征提取模块、增强模块和融合模块。特征提取模块对输入图像进行不同程度的卷积,提取多层次的图像特征,得到多个特征层;增强模块对提取到的特征层通过子网络进行增强,强化不同程度的细节特征;融合模块将增强后的特征层进行融合,输出增强图像。之后通过结构损失函数、内容损失函数和区域损失函数的约束,提高图像质量并有效抑制图像颜色失真与噪声放大,得到最终的增强图像。实验结果表明,该方法能够有效提升煤矿井下低光照图像的亮度和对比度,并且具有较强的噪声抑制能力,使图像能更好地恢复原有的细节信息,同时避免出现过曝光或颜色失真。

     

  • 图  1  面向煤矿井下低光照图像的增强网络整体结构

    Figure  1.  Overall structure of enhancement network for underground coal mine low-light image

    图  2  FEM结构

    Figure  2.  Structure of feature extraction module

    图  3  EM结构

    Figure  3.  Structure of enhancement module

    图  4  EM子网络结构

    Figure  4.  Sub-network structure of enhancement module

    图  5  FM结构

    Figure  5.  Structure of fusion module

    图  6  本文方法增强效果

    Figure  6.  Enhancement effect of the proposed method

    图  7  不同方法下图像增强效果对比

    Figure  7.  Comparison of image enhancement effect under different methods

    图  8  不同方法下图像客观评价结果对比

    Figure  8.  Comparison of image objective evaluation results under different methods

    图  9  不同特征层数下图像增强效果对比

    Figure  9.  Comparison of image enhancement effect under different feature layers

    图  10  EM添加Concat层前后增强效果对比

    Figure  10.  Comparison of enhancement effect before and after enhancement module adding Concat layer

    图  11  添加内容损失函数前后增强效果对比

    Figure  11.  Comparison of enhancement effect before and after adding context loss function

    表  1  本文方法下图像增强客观评价结果

    Table  1.   Objective evaluation results of image enhancement of the proposed method

    图像编号PSNRSSIM
    原始图像增强图像原始图像增强图像
    T11213.5421.890.430.78
    T11814.5518.650.130.74
    T12012.1921.210.300.73
    下载: 导出CSV

    表  2  EM添加Concat层前后NIQE值对比

    Table  2.   Comparison of NIQE value before and after enhancement module adding Concat layer

    图像编号NIQE
    无Concat层添加Concat层
    T8012.412.35
    T8223.783.59
    T8284.494.24
    T8412.832.58
    平均值3.383.19
    下载: 导出CSV
  • [1] 钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13.
    [2] 谢斌红,袁帅,龚大立. 基于RDB−YOLOv4的煤矿井下有遮挡行人检测[J]. 计算机工程与应用,2022,58(5):200-207.

    XIE Binhong,YUAN Shuai,GONG Dali. Detection of blocked pedestrians based on RDB-YOLOv4 in coal mine[J]. Computer Engineering and Applications,2022,58(5):200-207.
    [3] 李少荣. 基于改进直方图均衡化的红外图像增强技术的研究[J]. 工业控制计算机,2022,35(12):52-53,56. doi: 10.3969/j.issn.1001-182X.2022.12.019

    LI Shaorong. Infrared image enhancement technology based on improved histogram equalization[J]. Industrial Control Computer,2022,35(12):52-53,56. doi: 10.3969/j.issn.1001-182X.2022.12.019
    [4] 吕侃徽,张大兴. 基于自适应直方图均衡化耦合拉普拉斯变换的红外图像增强算法[J]. 光学技术,2021,47(6):747-753. doi: 10.13741/j.cnki.11-1879/o4.2021.06.018

    LYU Kanhui,ZHANG Daxing. Infrared image enhancement algorithm based on adaptive histogram equalization coupled with Laplace transform[J]. Optical Technique,2021,47(6):747-753. doi: 10.13741/j.cnki.11-1879/o4.2021.06.018
    [5] 杨微,姚冰莹,朱晓凤. 基于Retinex理论的低照度图像增强技术研究[J]. 现代计算机,2020(29):48-54. doi: 10.3969/j.issn.1007-1423.2020.29.008

    YANG Wei,YAO Bingying,ZHU Xiaofeng. Reserch on low illumination image enhancement technology based on Retinex theory[J]. Modern Computer,2020(29):48-54. doi: 10.3969/j.issn.1007-1423.2020.29.008
    [6] 陈超. 改进单尺度Retinex算法在图像增强中的应用[J]. 计算机应用与软件,2013,30(4):55-57. doi: 10.3969/j.issn.1000-386x.2013.04.016

    CHEN Chao. Application of improved single scale Retinex algorithm in image enhancement[J]. Computer Applications and Software,2013,30(4):55-57. doi: 10.3969/j.issn.1000-386x.2013.04.016
    [7] 赵晓霞,王汝琳,李雪艳. 基于多尺度Retinex的雾天降质图象增强算法[J]. 工矿自动化,2009,35(10):62-66.

    ZHAO Xiaoxia,WANG Rulin,LI Xueyan. Enhancement algorithm of fog-degraded image based on multiscale Retinex[J]. Industry and Mine Automation,2009,35(10):62-66.
    [8] WANG Shuhang,ZHENG Jin,HU Haimiao,et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing,2013,22(9):3538-3548. doi: 10.1109/TIP.2013.2261309
    [9] GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2016,26(2):982-993.
    [10] 胡建平,郝梦云,杜影,等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学精密工程,2022,30(24):3225-3238. doi: 10.37188/OPE.20223024.3225

    HU Jianping,HAO Mengyun,DU Ying,et al. Fusion of infrared and visible images via structure and texture-aware Retinex[J]. Optics and Precision Engineering,2022,30(24):3225-3238. doi: 10.37188/OPE.20223024.3225
    [11] DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1-6.
    [12] LORE K G,AKINTAYO A,SARKAR S. LLNet:a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition,2017,61:650-662. doi: 10.1016/j.patcog.2016.06.008
    [13] TAO Li, ZHU Chuang, XIANG Guoqing, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]. IEEE Visual Communications and Image Processing, Petersburg, 2017: 10-13.
    [14] WANG Wenjing, WEI Chen, YANG Wenhan, et al. GLADNet: low-light enhancement network with global awareness[C]. 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi'an, 2018: 15-19.
    [15] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep Retinex decomposition for low-light enhancement[C]. British Machine Vision Conference, Newcastle, 2018: 1-12.
    [16] 王满利, 张航, 李佳悦, 等. 基于深度神经网络的矿井下低光照图像增强算法[J/OL]. 煤炭科学技术: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.

    WANG Manli, ZHANG Hang, LI Jiayue, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground mines[J/OL]. Coal Science and Technology: 1-13[2023-04-20]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
    [17] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 13-19.
    [18] LYU Feifan, LU Feng, WU Jianhua, et al. MBLLEN: low-light image/video enhancement using CNNs[C]. British Machine Vision Conference, Newcastle, 2018: 220-233.
    [19] 朱新山,姚思如,孙彪,等. 图像质量评价:融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报,2018,50(5):121-128.

    ZHU Xinshan,YAO Siru,SUN Biao,et al. Image quality assessment:combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology,2018,50(5):121-128.
    [20] 孙彦景,杨玉芬,刘东林,等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报,2016,38(1):127-134.

    SUN Yanjing,YANG Yufen,LIU Donglin,et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics & Information Technology,2016,38(1):127-134.
    [21] 单月,刘段,万晓霞. 无参考图像质量评价研究现状与前景分析[J]. 包装工程,2022,43(13):296-304. doi: 10.19554/j.cnki.1001-3563.2022.13.037

    SHAN Yue,LIU Duan,WAN Xiaoxia. Current research status and prospect of no-reference image quality assessment[J]. Packaging Engineering,2022,43(13):296-304. doi: 10.19554/j.cnki.1001-3563.2022.13.037
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  205
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2023-04-20
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回