Research on the application of time shifting aeromagnetic method in detecting coal mine burning areas
-
摘要: 煤层自燃后导致上覆地层中的矿物质形成磁性矿物,呈现高磁异常特征,为磁法探测火烧区提供了物性前提。航空磁法在煤矿火烧区探测取得了良好效果,但无法有效探测煤层火烧区发展趋势。针对上述问题,在航空磁法的基础上,提出了时移航空磁法,即在一定时间间隔内开展2次航空磁法探测,根据2次航磁反演结果之间的差值,判断煤矿火烧区随时间的变化特征,达到有效探测煤矿火烧区分布范围及发展趋势的目的。为兼顾起伏地区的地形拟合效果和反演计算效率,采用规则与非规则复合网格剖分方法,即在地表起伏的地方采用四面体非规则网格剖分,在地表以下的地方采用六面体规则网格剖分。结果表明,规则与非规则复合网格剖分方法不仅满足起伏地形条件下对反演精度的要求,而且反演计算效率较四面体非规则网格剖分方法提升了近6倍。基于实际地质情况建立了数值模型,并利用无人机和航空光泵磁力仪进行实际测试。数值模拟和实测结果表明,时移航空磁法能够准确探测火烧区分布范围及火烧区随时间变化的发展趋势,可为煤矿开展防灭火工作提供依据。Abstract: The spontaneous combustion of coal seams leads to the formation of magnetic minerals in the overlying strata, exhibiting high magnetic anomaly features, providing a physical prerequisite for the magnetic method to detect the burning area. The aeromagnetic method has achieved good results in detecting coal mine burning areas, but it cannot effectively detect the development trend of coal mine burning areas. In order to solve the above problems, based on the aeromagnetic method method, a time-shifting aeromagnetic method is proposed. It involves conducting two aeromagnetic detections within a certain time interval. Based on the difference between the two aeromagnetic inversion results, the features of the coal mine burning area over time are determined. It achieves the goal of effectively detecting the distribution range and development trend of the coal mine burning area. In order to balance the terrain fitting effect and inversion calculation efficiency in undulating areas, a composite mesh generation method of regular and irregular grids is adopted. The tetrahedral irregular grid generation is used in undulating areas on the surface, and hexahedral regular grid generation is used in areas below the surface. The results show that the regular and irregular composite mesh generation method not only meets the requirements for inversion precision under undulating terrain conditions, but also improves the inversion calculation efficiency by nearly 6 times compared to the tetrahedral irregular mesh generation method. A numerical model is established based on actual geological conditions. The actual testing is conducted using unmanned aerial vehicles and aviation optical pump magnetometers. The numerical simulation and actual measurement results indicate that the time-shifting aeromagnetic method can accurately detect the distribution range of burning areas and the development trend of burning areas over time. It provides a basis for carrying out fire prevention and extinguishing work in coal mines.
-
表 1 不同网格剖分方法下反演计算效率对比
Table 1. Comparison of inversion efficiency under different grid subdivision methods
剖分方法 计算时间/h 规则与非规则复合网格剖分 1.3 四面体非规则网格剖分 7.4 -
[1] 梁运涛,王伟,王刚,等. 《煤矿防灭火细则》编制原则及要点解读[J]. 煤矿安全,2022,53(5):230-235.LIANG Yuntao,WANG Wei,WANG Gang,et al. Compilation principle and key points interpretation of Coal Mine Fire Prevention and Control Rules[J]. Safety in Coal Mines,2022,53(5):230-235. [2] 贺佑国. 2020中国煤炭发展报告[M]. 北京: 应急管理出版社, 2021.HE Youguo. China coal outlook 2020[M]. Beijing: Emergency Management Press, 2021. [3] 杨航,张晓雯,王凯林. 被“烧伤”的贺兰山:经济与生态耦合协调发展思考[J]. 北方经济,2022(12):62-65.YANG Hang,ZHANG Xiaowen,WANG Kailin. The "burnt" Helan Mountain:thinking about the coordinated development of economy and ecology[J]. Northern Economy,2022(12):62-65. [4] 张少停. 煤层自燃:地下的生态灾难[J]. 生态经济,2021,37(4):5-8.ZHANG Shaoting. Spontaneous coal seam combustion:underground ecological disaster[J]. Ecological Economy,2021,37(4):5-8. [5] 程卫民,张孝强,王刚,等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报,2016,41(3):662-671.CHENG Weimin,ZHANG Xiaoqiang,WANG Gang,et al. Reconstruction technology of gas and coal spontaneous combustion coupled hazard in fully mechanized caving goaf[J]. Journal of China Coal Society,2016,41(3):662-671. [6] 杨志和. 路天煤矿火区物探及治理关键技术研究[J]. 现代矿业,2021,37(8):216-219.YANG Zhihe. Research on the key technology of geophysical exploration and control in Lutian Coal Mine fire area[J]. Modern Mining,2021,37(8):216-219. [7] 王伟. 煤田火灾探测与治理技术现状及发展趋势[J]. 煤矿安全,2020,51(11):206-209,215.WANG Wei. Current situation and development trend for coalfield fire exploration and governance technology[J]. Safety in Coal Mines,2020,51(11):206-209,215. [8] 郭军,刘华,金彦,等. 地下煤自燃隐蔽火源探测方法综述及新技术展望[J]. 中国安全科学学报,2022,32(8):111-119.GUO Jun,LIU Hua,JIN Yan,et al. Summary of underground hidden coal spontaneous combustion fire source detection methods and prospect of new technologies[J]. China Safety Science Journal,2022,32(8):111-119. [9] 张洪. 煤矿采空区与火烧空区高密度电法探测模拟[J]. 煤矿安全,2023,54(6):76-83.ZHANG Hong. Simulation of high density electrical detection of goaf and burnt-out area in coal mine[J]. Safety in Coal Mines,2023,54(6):76-83. [10] 闫顺尚,王玲,董方营,等. 基于电−磁法联合勘探的火烧区范围及富水性的预测[J]. 煤田地质与勘探,2022,50(2):132-139.YAN Shunshang,WANG Ling,DONG Fangying,et al. Prediction of burnt rock areas and water abundance based on the electrical-magnetic method[J]. Coal Geology & Exploration,2022,50(2):132-139. [11] 段中会,马丽,郝纯,等. 基于微生物烃检测技术的陕北煤层火烧区绿色探测[J]. 煤田地质与勘探,2021,49(3):175-181.DUAN Zhonghui,MA Li,HAO Chun,et al. Green detection method of coal burning area in northern Shaanxi based on microbial hydrocarbon detection technology[J]. Coal Geology & Exploration,2021,49(3):175-181. [12] 王晓东,刘恋. 浅层高精度三维地震勘探方法在探查柠条塔煤矿火烧区域中的应用[J]. 工程地球物理学报,2019,16(2):174-183.WANG Xiaodong,LIU Lian. The application of shallow high-accuracy 3D seismic exploration method to exploring burned area of Ningtiaota Coal Mine[J]. Chinese Journal of Engineering Geophysics,2019,16(2):174-183. [13] 刘轩,王俊峰,周斌,等. 基于普通克里金法的同位素测氡探火数据优化处理[J]. 太原理工大学学报,2022,53(4):690-696.LIU Xuan,WANG Junfeng,ZHOU Bin,et al. Data optimization based on ordinary Kriging for radon detection to identify spontaneous combustion areas[J]. Journal of Taiyuan University of Technology,2022,53(4):690-696. [14] 熊盛青,于长春. 地下煤层自燃区岩石磁性增强特征及机理研究——以内蒙古乌达和宁夏汝萁沟煤矿为例[J]. 地球物理学报,2013,56(8):2827-2836.XIONG Shengqing,YU Changchun. Characteristics and mechanisms of rock magnetic increasing in underground coal spontaneous combustion area-take Wuda Coal Mine of Inner Mongolia and Ruqigou Coal Mine in Ningxia as example[J]. Chinese Journal of Geophysics,2013,56(8):2827-2836. [15] 陈敏,邵伟. 应用地面磁法圈定煤田火区边界[J]. 物探与化探,2010,34(1):89-92.CHEN Min,SHAO Wei. The application of the ground magnetic method to the exploration of fire area boundary of the coal field[J]. Geophysical and Geochemical Exploration,2010,34(1):89-92. [16] 张辛亥,窦凯,李经文,等. 磁异常划分煤岩火区机理及应用[J]. 煤炭工程,2021,53(3):135-139.ZHANG Xinhai,DOU Kai,LI Jingwen,et al. Mechanism and application of coal-rock fire zone division based on magnetic anomalies[J]. Coal Engineering,2021,53(3):135-139. [17] 梁盛军,何怡原,罗鸥. 白石泉−红柳井地区航磁测量影响因素分析[J]. 中国矿业,2017,26(增刊2):384-386.LIANG Shengjun,HE Yiyuan,LUO Ou. Studu on the influence factor of airborne magnetic survey in Baishiquan-Hongliujing area[J]. China Mining Magazine,2017,26(S2):384-386. [18] 王卫平,周锡华,范正国,等. 吊舱式直升机航空电磁技术示范应用[J]. 中国地质调查,2015,2(5):1-7.WANG Weiping,ZHOU Xihua,FAN Zhengguo,et al. Demonstration application of towered bird helicopter-borne electromagnetic technique[J]. Geological Survey of China,2015,2(5):1-7. [19] 徐维,张洲春,赵才生. 航空磁法测量在新疆某煤矿火烧区圈定中应用效果分析[J]. 河南科技,2022,41(9):59-62.XU Wei,ZHANG Zhouchun,ZHAO Caisheng. Application effect analysis of aeromagnetic survey in delineation of burning area of a coal mine in Xinjiang[J]. Henan Science and Technology,2022,41(9):59-62. [20] 吴璋,张振振,李雄伟,等. 基于不同高度异常交叉约束反演的航空磁法探测遗煤火区[J]. 煤炭技术,2023,42(6):133-136.WU Zhang,ZHANG Zhenzhen,LI Xiongwei,et al. Aeromagnetic method for detecting residual coal fire area based on cross constraint inversion of different height[J]. Coal Technology,2023,42(6):133-136. [21] 李昕洁,王维红,郭雪豹,等. 全波形反演正则化方法对比[J]. 石油地球物理勘探,2022,57(1):129-139,9.LI Xinjie,WANG Weihong,GUO Xuebao,et al. Comparison of regularization methods for full-wave-form inversion[J]. Oil Geophysical Prospecting,2022,57(1):129-139,9. [22] OKABE M. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies[J]. Geophysics,1979,44(4):730-741. doi: 10.1190/1.1440973 [23] 孟庆发. 起伏地形区重磁联合高精度物性反演方法研究[D]. 长春: 吉林大学, 2022.MENG Qingfa. Study on high precision physical property inversion method of gravity and magnetism combined with undulating terrain[D]. Changchun: Jilin University, 2022. [24] 李妍,高闽光,童晶晶,等. 基于巴特沃斯滤波器的傅里叶变换红外光谱处理方法研究[J]. 量子电子学报,2021,38(6):780-787.LI Yan,GAO Minguang,TONG Jingjing,et al. Study on Fourier transform infrared spectrum processing method based on Butterworth filter[J]. Chinese Journal of Quantum Electronics,2021,38(6):780-787.