留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全局点云地图的煤矿井下无人机定位方法

高海跃 王凯 王保兵 王丹丹

高海跃,王凯,王保兵,等. 基于全局点云地图的煤矿井下无人机定位方法[J]. 工矿自动化,2023,49(8):81-87, 133.  doi: 10.13272/j.issn.1671-251x.2022110024
引用本文: 高海跃,王凯,王保兵,等. 基于全局点云地图的煤矿井下无人机定位方法[J]. 工矿自动化,2023,49(8):81-87, 133.  doi: 10.13272/j.issn.1671-251x.2022110024
GAO Haiyue, WANG Kai, WANG Baobing, et al. Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map[J]. Journal of Mine Automation,2023,49(8):81-87, 133.  doi: 10.13272/j.issn.1671-251x.2022110024
Citation: GAO Haiyue, WANG Kai, WANG Baobing, et al. Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map[J]. Journal of Mine Automation,2023,49(8):81-87, 133.  doi: 10.13272/j.issn.1671-251x.2022110024

基于全局点云地图的煤矿井下无人机定位方法

doi: 10.13272/j.issn.1671-251x.2022110024
基金项目: 北京市科学技术委员会科技成果转移转化项目(Z171100002317029);山东省重大科技创新工程项目(2020CXGC01150102);天地科技股份有限公司科技创新创业资金专项项目(2022-2-TD-QN011);北京天玛智控科技股份有限公司科技项目 (2022TM027-C1)。
详细信息
    作者简介:

    高海跃(1995—),男,天津人,硕士,现主要从事地下无人机系统研发工作,E-mail:gaohy@tdmarco.com

  • 中图分类号: TD67

Positioning method for underground unmanned aerial vehicles in coal mines based on global point cloud map

  • 摘要: 即时定位与建图 (SLAM)技术应用于煤矿井下无人机自主定位时,由于采用特征点构建地图,易出现退化问题,导致定位不准确,且因其以机体作为参考坐标系,无法实现全局定位。针对该问题,提出了一种基于全局点云地图的煤矿井下无人机定位方法。以Fast−LIO2算法作为激光SLAM算法,获得无人机位姿估计;采用迭代最近邻算法,对获取的激光雷达实时点云和全局点云地图进行两步匹配,实现无人机位姿校正;针对因点云数量过多导致点云匹配速度无法保证定位实时性的问题,设计了基于时间的位姿输出策略,提高了无人机位姿数据输出频率。在1 000 m煤矿井下巷道中测试无人机定位方法的SLAM精度和位姿校正效果,结果表明:在长距离巷道环境中,Fast−LIO2算法的定位累计误差小于1 m,在600 m以上范围内小于0.3 m,明显小于LOAM−Livox算法和LIO−Livox算法;Fast−LIO2算法输出的位姿估计经校正算法校正后,飞行路径全部位于全局点云地图中,验证了位姿校正算法有效;单次SLAM算法运行耗时14.83 ms,单次位姿校正耗时883 ms,位姿数据输出频率为10 Hz,满足无人机定位实时性要求。

     

  • 图  1  煤矿井下无人机定位方法架构

    Figure  1.  Structure of unmanned aerial vehicles (UAV) positioning method in underground coal mine

    图  2  激光SLAM算法的无人机位姿估计流程

    Figure  2.  Flow of UAV position and attitude estimation of lidar simultaneous localization and mapping (SLAM) algorithm

    图  3  两步匹配算法流程

    Figure  3.  Flow of two-step matching algorithm

    图  4  试验用无人机硬件组成

    Figure  4.  Hardware composition of testing UAV

    图  5  试验用无人机平台

    Figure  5.  Testing UAV platform

    图  6  井下无人机飞行试验场景

    Figure  6.  Underground UAV flight test

    图  7  不同SLAM算法的建图效果对比

    Figure  7.  Mapping effect of different SLAM algorithms

    图  8  不同SLAM算法定位误差曲线

    Figure  8.  Positioning error curves of different SLAM algorithms

    图  9  位姿校正前后无人机飞行路径对比

    Figure  9.  Comparison of UAV flight routes before and after position and attitude correction

    算法1:位姿变换算法
    输入:点云地图$ {{{\boldsymbol{P}}}_{{\text{map}}}} $,   当前时刻的扫描点云${{\boldsymbol{P}}}_k^{{L}}$,   SLAM位姿变换矩阵${\overline {\boldsymbol{T}}_k}$,   当前时刻${t_k}$,   上一次运行位姿校正程序的时间${t_j}$,   SLAM坐标系到全局点云地图坐标系的位姿变换矩阵${{\boldsymbol{T}}_k ^{{{G - M}}}}$。输出:当前时刻的全局位姿变换矩阵${{\boldsymbol{T}}_k}$。
    1 预测位姿变换矩阵${\hat {\boldsymbol{T}}_k} = {{\boldsymbol{T}}_k^{G - M}}{{\boldsymbol{T}}_k}$; 2 If ${t_k} - {t_j} > 1/f$ then 3  将${{{\boldsymbol{P}}}_{{\text{map}}}}$和${{\boldsymbol{P}}}_k^{{L}}$点云降采样,得到$ {{{\boldsymbol{P}}}_{ {\text{map}}}^\prime} $和${{\boldsymbol{P}}}_k^{ \prime {L}}$,将${{\boldsymbol{P}}}_k^{ \prime {L}}$按${\hat {\boldsymbol{T}}_k}$变换为${{\boldsymbol{P}}}_k^{ \prime {M}}$; 4  使用ICP算法对$ {{{\boldsymbol{P}}}_{ {\text{map}}}^ \prime} $和${{\boldsymbol{P}}}_k^{ \prime{M}}$进行粗匹配,得到${\overline {\boldsymbol{T }}_k^\prime}$; 5  将${M}$和${{\boldsymbol{P}}}_k^{{L}}$点云降采样,得到$ {{{\boldsymbol{P}}}_{ {\text{map}}}^{\prime\prime}} $和${{\boldsymbol{P}}}_k^{ \prime \prime {L}}$,将${{\boldsymbol{P}}}_k^{ \prime \prime{L}}$按${\hat {\boldsymbol{T}}_k}{\overline {\boldsymbol{T}}{}_k^{\prime }}$变换为${{\boldsymbol{P}}}_k^{ \prime \prime{M}}$; 6  使用ICP算法对$ {{{\boldsymbol{P}}} _{ {\text{map}}}^{\prime\prime}} $和${{\boldsymbol{P}}}_k^{ \prime \prime{M}}$进行精匹配,得到${\overline {\boldsymbol{T}}_k^{\prime \prime}}$; 7  全局位姿变换矩阵${{\boldsymbol{T}}_k}{\text{ = }}{\hat {\boldsymbol{T}}_k}{\overline {\boldsymbol{T}}_k^{\prime }}{\overline {\boldsymbol{T}}{}_k^{\prime \prime}}$; 8  ${\boldsymbol{T}}_k^{{{G } -{ M}}} = {{\boldsymbol{T}}_k}{\overline {\boldsymbol{T}}_k}$ 9 else 10  ${{\boldsymbol{T}}_k}{\text{ = }}{\hat {\boldsymbol{T}}_k}$ 11  final 12  return ${{\boldsymbol{T}}_k}$
    下载: 导出CSV

    表  1  不同SLAM算法定位误差对比

    Table  1.   Positioning error comparison of different SLAM algorithms

    试验条件误差/m
    100 m处200 m处300 m处400 m处500 m处600 m处700 m处800 m处900 m处1 000 m处
    从标记a点起飞LOAM−Livox0.16−0.310.20−0.25−6.18−11.90−27.84−60.76−62.10−63.82
    LIO−Livox−0.04−0.41−0.50−1.15−2.08−2.36−2.25−3.31−5.47−7.28
    本文算法0.270.100.380.36−0.18−0.020.350.380.27−0.76
    从标记200 m处起飞LOAM−Livox0.690.32−5.27−11.17−26.51−62.41−63.91−65.91
    LIO−Livox0.640.05−0.04−1.20−1.02−1.82−4.78−6.80
    本文算法0.290.27−0.28−0.120.250.290.18−0.86
    从标记400 m处起飞LOAM−Livox−9.32−13.84−28.72−64.62−66.22−68.52
    LIO−Livox−1.50−1.97−2.03−3.08−7.15−9.30
    本文算法−0.28−0.40−0.030.01−0.10−0.58
    从标记600 m处起飞LOAM−Livox−17.48−50.84−51.72−53.58
    LIO−Livox−0.19−1.61−4.72−6.76
    本文算法−0.130.02−0.13−0.55
    下载: 导出CSV

    表  2  位姿校正前后标记点坐标

    Table  2.   Coordinate of label points before and after position and attitude correction

    位置校正前坐标/m校正后坐标/m
    XYZXYZ
    100 m处100.193−3.810−0.67299.967−0.3263.497
    200 m处199.877−7.530−5.523200.106−0.5132.860
    300 m处299.978−11.356−10.658300.008−0.8562.036
    400 m处399.728−14.856−16.975400.102−0.8450.071
    500 m处499.157−18.536−17.829500.070−1.0533.640
    600 m处599.201−22.067−21.024600.035−1.1724.899
    700 m处699.390−24.916−26.742700.184−0.7033.668
    800 m处799.140−28.294−34.422800.051−0.8210.595
    900 m处898.886−30.942−39.222900.065−0.1240.395
    1000 m处997.655−34.066−44.636998.930−0.014−0.082
    下载: 导出CSV

    表  3  算法单个步骤单次运行耗时

    Table  3.   Time consumption of single operation in single step of the algorithm

    步骤运行频率/Hz运行耗时/ms
    SLAM预处理100.05
    位姿估计1014.35
    建图100.43
    位姿校正0.05883
    下载: 导出CSV
  • [1] 郑学召,童鑫,张铎,等. 矿井危险区域多旋翼侦测无人机关键技术探讨[J]. 工矿自动化,2020,46(12):48-56. doi: 10.13272/j.issn.1671-251x.17653

    ZHENG Xuezhao,TONG Xin,ZHANG Duo,et al. Discussion on key technologies of multi-rotor detection UAVs in mine dangerous area[J]. Industry and Mine Automation,2020,46(12):48-56. doi: 10.13272/j.issn.1671-251x.17653
    [2] 吕文红,夏双双,魏博文,等. 基于改进A*算法的灾后井下无人机航迹规划[J]. 工矿自动化,2018,44(5):85-90.

    LYU Wenhong,XIA Shuangshuang,WEI Bowen,et al. Route planning of unmanned aerial vehicle in post-disaster underground based on improved A* algorithm[J]. Industry and Mine Automation,2018,44(5):85-90.
    [3] 张铎,吴佩利,郑学召,等. 矿井侦测无人机研究现状与发展趋势[J]. 工矿自动化,2020,46(7):76-81.

    ZHANG Duo,WU Peili,ZHENG Xuezhao,et al. Research status and development trend of mine detection unmanned aerial vehicle[J]. Industry and Mine Automation,2020,46(7):76-81.
    [4] 李标. 基于无人机技术的煤矿带式输送机巡检方案[J]. 煤矿安全,2020,51(7):128-131.

    LI Biao. Inspection scheme of coal mine belt conveyor based on UAV technology[J]. Safety in Coal Mines,2020,51(7):128-131.
    [5] 王岩,马宏伟,王星,等. 基于迭代最近点的井下无人机实时位姿估计[J]. 工矿自动化,2019,45(9):25-29.

    WANG Yan,MA Hongwei,WANG Xing,et al. Real-time pose estimation of underground unmanned aerial vehicle based on ICP method[J]. Industry and Mine Automation,2019,45(9):25-29.
    [6] 夏双双,殷立杰. 煤矿井下无人机SLAM定位算法研究[J]. 电子质量,2017(12):56-61,66. doi: 10.3969/j.issn.1003-0107.2017.12.015

    XIA Shuangshuang,YIN Lijie. Research on SLAM location algorithm of downhole UAV[J]. Electronics Quality,2017(12):56-61,66. doi: 10.3969/j.issn.1003-0107.2017.12.015
    [7] 江传龙,黄宇昊,韩超,等. 井下巡检无人机系统设计及定位与避障技术[J]. 机械设计与研究,2021,37(4):38-42,48.

    JIANG Chuanlong,HUANG Yuhao,HAN Chao,et al. Design of underground inspection UAV system and studyof positioning and obstacle avoidance[J]. Machine Design & Research,2021,37(4):38-42,48.
    [8] ZHANG Ji, SINGH S. Visual-lidar odometry and mapping: low-drift, robust, and fast[C]. IEEE International Conference on Robotics and Automation, Piscataway, 2015: 2174-2181.
    [9] ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41(2):401-416. doi: 10.1007/s10514-016-9548-2
    [10] SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, 2018: 4758-4765.
    [11] SHAN Tixiao, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE International Conference on Intelligent Robots and Systems, Las Vegas, 2020: 5135-5142.
    [12] CHAO Qin, YE Haoyang, PRANATA C E, et al. LINS: a lidar-inertial state estimator for robust and efficient navigation[C]. IEEE International Conference on Robotics and Automation, Piscataway, 2020: 8899-8906.
    [13] 杨林,马宏伟,王岩. 基于激光惯性融合的煤矿井下移动机器人SLAM算法[J]. 煤炭学报,2022,47(9):3523-3534. doi: 10.13225/j.cnki.jccs.2022.0506

    YANG Lin,MA Hongwei,WANG Yan. LiDAR-inertial SLAM for mobile robot in underground coal mine[J]. Journal of China Coal Society,2022,47(9):3523-3534. doi: 10.13225/j.cnki.jccs.2022.0506
    [14] 邹筱瑜,黄鑫淼,王忠宾,等. 基于集成式因子图优化的煤矿巷道移动机器人三维地图构建[J]. 工矿自动化,2022,48(12):57-67,92. doi: 10.13272/j.issn.1671-251x.2022100041

    ZOU Xiaoyu,HUANG Xinmiao,WANG Zhongbin,et al. 3D map construction of coal mine roadway mobile robot based on integrated factor graph optimization[J]. Journal of Mine Automation,2022,48(12):57-67,92. doi: 10.13272/j.issn.1671-251x.2022100041
    [15] 李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法[J]. 工矿自动化,2022,48(12):68-78. doi: 10.13272/j.issn.1671-251x.2022100061

    LI Menggang,HU Eryi,ZHU Hua. LiDAR/IMU tightly-coupled SLAM method for coal mine mobile robot[J]. Journal of Mine Automation,2022,48(12):68-78. doi: 10.13272/j.issn.1671-251x.2022100061
    [16] 马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56. doi: 10.13272/j.issn.1671-251x.2022070007

    MA Aiqiang,YAO Wanqiang,LIN Xiaohu,et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56. doi: 10.13272/j.issn.1671-251x.2022070007
    [17] XU Wei,ZHANG Fu. FAST-LIO:a fast,robust LiDAR-Inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters,2021,6(2):3317-3324. doi: 10.1109/LRA.2021.3064227
    [18] XU Wei,CAI Yixi,HE Dongjiao,et al. FAST-LIO2:fast direct LiDAR-Inertial odometry[J]. IEEE Transactions on Robotics,2022,38(4):2053-2073. doi: 10.1109/TRO.2022.3141876
    [19] LIN Jiarong, ZHANG Fu. LOAM Livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV[C]. IEEE International Conference on Robotics and Automation, Paris, 2020: 3126- 3131.
    [20] GitHub-Livox-SDK/LIO-Livox: a robust LiDAR-inertial odometry for Livox LiDAR[EB/OL]. [2022-12-22]. https://github.com/Livox-SDK/LIO-Livox.
    [21] BESL P,MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. doi: 10.1109/34.121791
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  53
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-08-16
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回