留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双目结构光视觉的煤流量测量研究

张俊升 王洪磊 李佳城

张俊升,王洪磊,李佳城. 基于双目结构光视觉的煤流量测量研究[J]. 工矿自动化,2023,49(7):19-26.  doi: 10.13272/j.issn.1671-251x.2022100050
引用本文: 张俊升,王洪磊,李佳城. 基于双目结构光视觉的煤流量测量研究[J]. 工矿自动化,2023,49(7):19-26.  doi: 10.13272/j.issn.1671-251x.2022100050
ZHANG Junsheng, WANG Honglei, LI Jiacheng. Research on coal flow measurement based on binocular structured light vision[J]. Journal of Mine Automation,2023,49(7):19-26.  doi: 10.13272/j.issn.1671-251x.2022100050
Citation: ZHANG Junsheng, WANG Honglei, LI Jiacheng. Research on coal flow measurement based on binocular structured light vision[J]. Journal of Mine Automation,2023,49(7):19-26.  doi: 10.13272/j.issn.1671-251x.2022100050

基于双目结构光视觉的煤流量测量研究

doi: 10.13272/j.issn.1671-251x.2022100050
基金项目: 天地科技股份有限公司科技创新创业资金专项项目(2022-3-TD-ZD001)。
详细信息
    作者简介:

    张俊升(1995—),男,四川巴中人,助理研究员,硕士,研究方向为智能矿山和机器视觉,E-mail:zhangjs2013s@163.com

  • 中图分类号: TD634

Research on coal flow measurement based on binocular structured light vision

  • 摘要: 在常规的双目视觉系统中,常用的加速稳健特征和尺度不变特征转换匹配算法对图像质量要求高,针对煤炭这种颜色纹理比较单一的场景应用时容易失效,且需要消耗大量的计算资源,难以保证实时性;激光雷达在进行煤流量测量时,有效视场范围较小,对应的测量点数较少,扫描频率也较低,在带式输送机运行速度较快时,精度会大幅降低。针对上述问题,提出一种基于双目结构光视觉的煤流量测量方法,将线结构光引入双目视觉系统,利用线结构光的约束,将图像特征点匹配简化成左右2幅图像行之间的匹配。在保证双目系统相机光轴平行度的基础上,采用对应行匹配计算三维坐标点,提高采样频率和分辨率,进而提高煤流量测量精度,降低测量系统对光照和环境的依赖。点云获取:利用线结构光凸显煤料截面曲线,提取煤料截面中心线的图像坐标,利用双目相机获取左右煤料截面线结构光图像,建立双目结构光三维重建模型,左右图像中心线坐标构成匹配点对参与计算煤料截面三维坐标,实现点云的实时获取。煤流量计算:利用空载胶带截面点云和负载胶带截面点云,结合获取煤料点云,利用微元法对煤料三维点云进行采样,分别利用均匀网格化法和三角网格化法求取单位时间内的煤料体积,实现带式输送机煤流量测量。实验结果表明,利用均匀网格化法检测煤料体积平均相对误差为6.758%,利用三角网格化法检测煤料体积平均相对误差为2.791%,三角网格化法测量精度高于均匀网格化法。工业性试验结果表明,基于双目结构光视觉的煤流量测量方法与电子胶带秤相比,绝对误差最大值为87.855 t/h,绝对误差平均值为25.902 t/h,相对误差最大值为2.876%,平均相对误差为0.847%,满足煤矿非接触式煤流量测量使用要求。

     

  • 图  1  双目视觉模型

    Figure  1.  Binocular visual model

    图  2  双目煤流量测量系统布置

    Figure  2.  Arrangement of the binocular coal flow measurement system

    图  3  双目结构光图像

    Figure  3.  Binocular structured light image

    图  4  煤料点云合成原理

    Figure  4.  Synthesis principle of coal point cloud

    图  5  煤流量计算原理

    Figure  5.  Calculation principle of coal flow

    图  6  点云均匀网格化

    Figure  6.  Point cloud uniform meshing

    图  7  点云三角网格化

    Figure  7.  Point cloud triangle meshing

    图  8  煤流量测量试验平台

    Figure  8.  Coal flow measurement and test platform

    图  9  空载胶带与负载胶带表面点云

    Figure  9.  Point cloud on the surface of no-load belt and load belt

    图  10  选煤厂煤流测量试验

    Figure  10.  Coal flow measurement test of coal washing plant

    图  11  双目煤流量测量系统软件界面

    Figure  11.  Software interface of the binocular coal flow measurement system

    图  12  电子胶带秤软件界面

    Figure  12.  Software interface of electronic belt scale

    图  13  本文方法与电子胶带秤检测结果

    Figure  13.  Test results of this method and electronic belt weigher

    图  14  本文方法相对电子胶带秤绝对误差

    Figure  14.  Absolute error of this method relative to electronic belt weigher

    图  15  本文方法相对电子胶带秤相对误差

    Figure  15.  Relative error of this method relative to electronic belt weigher

    表  1  煤料体积测量结果

    Table  1.   Measurement results of coal material volume

    标准
    体积/cm3
    均匀
    网格化/cm3
    三角
    网格化/cm3
    均匀网格化
    相对误差/%
    三角网格化
    相对误差/%
    250228.667252.1428.5330.857
    500478.458521.1724.9084.234
    750695.941764.5057.2081.934
    1 0001 091.213965.9419.1213.406
    1 2501 321.0481 275.5725.6842.046
    1 5001 423.6241 564.0145.0924.268
    平均相对误差/%6.7582.791
    下载: 导出CSV

    表  2  检测参数设置

    Table  2.   Test parameter settings

    参数名称设置数值
    曝光时间/μs1 000
    增益2
    像素数2 048×256
    堆煤密度/(t·m−30.90
    下载: 导出CSV
  • [1] 方原柏. 皮带秤系统试验装置发展四十年回顾[J]. 衡器,2021,50(8):42-51. doi: 10.3969/j.issn.1003-5729.2021.08.011

    FANG Yuanbai. Review of 40 years development of belt weigher system test sevice[J]. Weighing Instrument,2021,50(8):42-51. doi: 10.3969/j.issn.1003-5729.2021.08.011
    [2] 王占飞,王耀. 煤矿井下煤流运输系统智能调速研究与应用[J]. 煤炭科学技术,2022,50(增刊1):283-288.

    WANG Zhanfei,WANG Yao. Research and application of intelligent speed regulation of coal flow transportation system in coal mine[J]. Coal Science and Technology,2022,50(S1):283-288.
    [3] 李瑶,王义涵. 带式输送机煤流量自适应检测方法[J]. 工矿自动化,2020,46(6):98-102.

    LI Yao,WANG Yihan. Adaptive coal flow detection method of belt conveyor[J]. Industry and Mine Automation,2020,46(6):98-102.
    [4] 杨春雨,顾振,张鑫,等. 基于深度学习的带式输送机煤流量双目视觉测量[J]. 仪器仪表学报,2021,41(8):164-174.

    YANG Chunyu,GU Zhen,ZHANG Xin,et al. Binocular vision measurement of coal flow of belt conveyors based on deep learning[J]. Chinese Journal of Scientific Instrument,2021,41(8):164-174.
    [5] 胡而已. 基于激光扫描的综放工作面放煤量智能监测技术[J]. 煤炭科学技术,2022,50(2):244-251. doi: 10.13199/j.cnki.cst.2021-0105

    HU Eryi. Intelligent monitoring technology of coal caving in fully-mechanized caving face based on laser scanning[J]. Coal Science and Technology,2022,50(2):244-251. doi: 10.13199/j.cnki.cst.2021-0105
    [6] MOLNAR V,LIPOVCOVA K. Design of clamping structure for material flow monitor of pipe conveyors[J]. Open Engineering,2019,9(1):586-592. doi: 10.1515/eng-2019-0068
    [7] 代伟, 赵杰, 杨春雨, 等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]煤炭学报, 2017, 42(增刊2): 547-555.

    DAI Wei, ZHAO Jie, YANG Chunyu, et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society, 2017, 42(S2): 547-555.
    [8] 王才东,刘丰阳,李志航,等. 基于双目视觉特征点匹配的图像拼接方法研究[J]. 激光与光电子学进展,2021,58(12):357-365.

    WANG Caidong,LIU Fengyang,LI Zhihang,et al. Research on image mosaic method based on binocular vision feature point matching[J]. Laser & Optoelectronics Progress,2021,58(12):357-365.
    [9] 罗久飞,邱广,张毅,等. 基于自适应双阈值的SURF双目视觉匹配算法研究[J]. 仪器仪表学报,2020,41(3):240-247.

    LUO Jiufei,QIU Guang,ZHANG Yi,et al. Research on speeded up robust feature binocular vision matching algorithm based on adaptive double threshold[J]. Chinese Journal of Scientific Instrument,2020,41(3):240-247.
    [10] 姜玉峰,张立亚,李标,等. 基于单线激光雷达的带式输送机煤流量检测研究[J]. 煤矿机械,2022,43(8):151-153.

    JIANG Yufeng,ZHANG Liya,LI Biao,et al. Study on coal flow detection of belt conveyor based on single-line LiDAR[J]. Coal Mine Machinery,2022,43(8):151-153.
    [11] FEI Yu, FU Qiang, ZHUANG Ying, et al. Binocular vision pose estimation based on PSOPF[J]. Journal of Physics: Conference Series, 2019, 1302(3). DOI: 10.1088/1742-6596/1302/3/032051.
    [12] WANG Song,HU Yanzhu. Binocular visual positioning under inhomogeneous,transforming and fluctuating media[J]. Traitement du Signal,2018,35(3/4):253-276.
    [13] ZHANG Zhengyou. A flexible new technique for camera calibration[J]. IEEE Transaactions on Pattern Analysis and Machie Intelligence,2000,22(11):1330-1334. doi: 10.1109/34.888718
    [14] 曾超,王少军,卢红,等. 线结构光光条中心提取算法[J]. 中国图象图形学报,2019,24(10):1772-1780.

    ZENG Chao,WANG Shaojun,LU Hong,et al. Center extraction algorithm of line structured light stripe[J]. Journal of Image and Graphics,2019,24(10):1772-1780.
    [15] 卢红阳,刘且根,熊娇娇,等. 基于最大加权投影求解的彩色图像灰度化对比度保留算法[J]. 自动化学报,2017,43(5):843-854.

    LU Hongyang,LIU Qiegen,XIONG Jiaojiao,et al. Maximum weighted projection solver for contrast preserving decolorization[J]. Acta Automatica Sinica,2017,43(5):843-854.
    [16] HERMOSILIA P,RITSCHEL T,VAZQUEZ P,et al. Monte carlo convolution for learning on non-uniformly sampled point clouds[J]. ACM Transactions on Graphics(TOG),2018,37(6):1-12.
    [17] PEREIRA F I,LUFT J A,IIHA G,et al. A novel resection-intersection algorithm with fast triangulation applied to monocular visual odometry[J]. IEEE Transactions on Intelligent Transportation Systems,2018,19(11):3584-3593. doi: 10.1109/TITS.2018.2853579
    [18] ZHANG Yuyan,GUO Quanli,WANG Zhenchun,et al. Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud[J]. Measurement Science and Technology,2018,29(3):035601-035608. doi: 10.1088/1361-6501/aa99fb
    [19] MATTHIJS E,PARLIER H,VEGTER G,et al. Minimal delaunay triangulations of hyperbolic surfaces[J]. Discrete & Computational Geometry,2022,69(2):1-25.
    [20] 李铁军,王学文,李博,等. 基于离散元法的煤颗粒模型参数优化[J]. 中国粉体技术,2018,24(5):6-12.

    LI Tiejun,WANG Xuewen,LI Bo,et al. Optimization method for coal particle model parameters based on discrete element method[J]. China Powder Science and Technology,2018,24(5):6-12.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  188
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回