留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv5s的带式输送机滚筒故障检测研究

苗长云 孙丹丹

苗长云,孙丹丹. 基于改进YOLOv5s的带式输送机滚筒故障检测研究[J]. 工矿自动化,2023,49(7):41-48.  doi: 10.13272/j.issn.1671-251x.2022100039
引用本文: 苗长云,孙丹丹. 基于改进YOLOv5s的带式输送机滚筒故障检测研究[J]. 工矿自动化,2023,49(7):41-48.  doi: 10.13272/j.issn.1671-251x.2022100039
MIAO Changyun, SUN Dandan. Research on fault detection of belt conveyor drum based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(7):41-48.  doi: 10.13272/j.issn.1671-251x.2022100039
Citation: MIAO Changyun, SUN Dandan. Research on fault detection of belt conveyor drum based on improved YOLOv5s[J]. Journal of Mine Automation,2023,49(7):41-48.  doi: 10.13272/j.issn.1671-251x.2022100039

基于改进YOLOv5s的带式输送机滚筒故障检测研究

doi: 10.13272/j.issn.1671-251x.2022100039
基金项目: 国家自然科学基金面上项目(NSFC51274150);天津市重点研发计划科技支撑项目(18YFZCGX00930)。
详细信息
    作者简介:

    苗长云 (1962— ),男,吉林梅河口人,教授,博士,主要研究方向为光电检测技术与系统,E-mail:miaochangyun@tiangong.edu.cn

  • 中图分类号: TD634.1

Research on fault detection of belt conveyor drum based on improved YOLOv5s

  • 摘要: 针对目前带式输送机滚筒故障检测方法检测效率低、识别准确率不高、特征提取能力较差等问题,提出了一种基于改进YOLOv5s的带式输送机滚筒故障检测方法。在YOLOv5s网络模型中增加了小尺寸检测层,使尺寸较小的滚筒故障更易被检测到;在Backbone和Neck间引入卷积注意力机制(CBAM),提高目标检测的准确率;在Neck中引入高效通道注意力机制(ECA),增强对滚筒故障的特征提取能力。实验结果表明:① 在满足实时检测要求的前提下,改进YOLOv5s网络模型识别平均准确率均值达94.46%,较改进前提升了1.65%。② 改进YOLOv5s网络模型对滚筒开焊、包胶磨损和包胶脱落检测的平均准确率分别为95.29%,96.43%,91.65%,较改进前分别提高了1.56%,0.89%和2.50%。设计了基于改进YOLOv5s的带式输送机滚筒故障检测系统,并对该系统进行验证:①实验平台测试结果表明:基于改进YOLOv5s的带式输送机滚筒故障检测系统对滚筒开焊、包胶磨损和包胶脱落检测的平均准确率分别达95.29%,96.43%,91.65%,3种故障检测的平均准确率均值达94.46%,检测速度约为14帧/s。 ② 现场测试结果表明:包胶磨损和包胶脱落的置信度分别为0.92,0.97,且能准确地识别出滚筒的故障类型和位置,说明基于改进YOLOv5s的带式输送机滚筒故障检测系统具有可行性。

     

  • 图  1  YOLOv5s网络结构

    Figure  1.  YOLOv5s network structure

    图  2  改进YOLOv5s网络结构

    Figure  2.  Improved YOLOv5s network structure

    图  3  基于改进YOLOv5s的滚筒故障检测流程

    Figure  3.  Drum fault detection process based on improved YOLOv5s

    图  4  基于改进YOLOv5s的带式输送机滚筒故障检测系统架构

    Figure  4.  Architecture of belt conveyor drum fault detection system based on improved YOLOv5s

    图  5  带式输送机滚筒故障检测器硬件框架

    Figure  5.  Hardware frame of the belt conveyor drum fault detector

    图  6  带式输送机滚筒故障检测系统实验平台

    Figure  6.  Experimental platform of belt conveyor drum fault detection system

    图  7  带式输送机滚筒故障检测可视化结果

    Figure  7.  Visual result of the belt conveyor drum fault detection

    图  8  控制终端显示界面

    Figure  8.  Display interface of control terminal

    图  9  煤矿现场带式输送机滚筒故障检测结果

    Figure  9.  Fault detection results of belt conveyor drum in coal mine field

    表  1  训练超参数

    Table  1.   Training hyperparameterss

    训练超参数
    初始学习率0.01
    学习率衰减0.000 1
    动量0.973
    批处理大小32
    训练批次300
    图像输入尺寸416×416
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experimental results

    改进策略平均准确率均值/%帧速率/(帧·s−1
    小尺寸检测层CBAMECA
    ×××92.8132.969
    ××93.7626.366
    ××93.8832.375
    ××93.8731.238
    94.4625.227
    下载: 导出CSV

    表  3  YOLOv5s网络模型改进前后性能对比

    Table  3.   Performance comparison before and after YOLOv5s network model improvement

    模型类别平均
    准确率/%
    平均
    准确率均值/%
    参数量
    YOLOv5s 滚筒开焊 93.73 92.81 7 066 239
    包胶磨损 95.54
    包胶脱落 89.15
    改进YOLOv5s 滚筒开焊 95.29 94.46 7 210 354
    包胶磨损 96.43
    包胶脱落 91.65
    下载: 导出CSV

    表  4  带式输送机滚筒故障检测系统检测性能

    Table  4.   Detection performance of the belt conveyor drum falut detection system %

    类别精确率召回率平均准确率平均准确率均值
    滚筒开焊93.1090.9895.29
    94.46
    包胶磨损97.1295.3396.43
    包胶脱落98.2190.8591.65
    下载: 导出CSV
  • [1] ANDREJIOVA M,GRINCOVA A,MARASOVA D. Measurement and simulation of impact wear damage to industrial conveyor belts[J]. Wear,2016,368:400-407.
    [2] 刘洋. 机器视觉的输送带纵向撕裂故障检测系统信号采集器的研究[D]. 天津: 天津工业大学, 2016.

    LIU Yang. Study on signal collector of conveyor belt longitudinal tear fault detection system for machine vision[D]. Tianjin: Tianjin Polytechnic University, 2016.
    [3] 韩越. 带式输送机驱动滚筒轴承故障特征提取分析研究[J]. 煤矿机械,2021,42(10):162-165.

    HAN Yue. Analysis and study on fault feature extraction of driving roller bearing of belt conveyor[J]. Coal Mine Machinery,2021,42(10):162-165.
    [4] 李丹宁,郑闯. 一种模糊神经网络的采煤机滚筒温度实时故障预警方法[J]. 煤炭科学技术,2021,49(增刊1):161-166.

    LI Danning,ZHENG Chuang. A real-time fault early warning method of shearer drum temperature based on fuzzy neural network[J]. Coal Science and Technology,2021,49(S1):161-166.
    [5] 张强. 基于新型检测方法的带式输送机滚筒故障诊断[J]. 机械管理开发,2022,37(6):144-145,151.

    ZHANG Qiang. Fault diagnosis of belt conveyor roller based on new detection method[J]. Mechanical Management and Development,2022,37(6):144-145,151.
    [6] 丁秀荣,薛正福,王芝兰. 矿用带式输送机滚筒故障检测系统应用研究[J]. 能源与环保,2022,44(4):205-210.

    DING Xiurong,XUE Zhengfu,WANG Zhilan. Application research on fault detection system of mine belt conveyor roller running[J]. China Energy and Environmental Protection,2022,44(4):205-210.
    [7] 李现国,李斌,刘宗鹏,等. 井下视频行人检测方法[J]. 工矿自动化,2020,46(2):54-58.

    LI Xianguo,LI Bin,LIU Zongpeng,et al. Underground video pedestrian detection method[J]. Industry and Mine Automation,2020,46(2):54-58.
    [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
    [9] BOCHKOVSKIY A, WANG C Y, LIAO H Y, et al. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2021-06-04]. https://arxiv.org/abs/2004.10934.
    [10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-06-04]. https://arxiv.org/abs/1804.02767.
    [11] SINGH S K. Multiple fault detection of rolling bearing through ensemble empirical mode decomposition of vibration signal[J]. International Journal of Engineering and Advanced Technology,2019,9(2):2724-2726. doi: 10.35940/ijeat.B3562.129219
    [12] 潘杨,张守京,杨文彬. 基于改进YOLOv5的棉花异纤检测方法[J]. 棉纺织技术,2022,50(10):37-43.

    PAN Yang,ZHANG Shoujing,YANG Wenbin. Detection method of foreign fiber in cotton based on improved YOLOv5[J]. Cotton Textile Technology,2022,50(10):37-43.
    [13] 孙耀泽,高军伟. 基于改进YOLOv5的轮对踏面缺陷检测[J]. 激光与光电子学进展,2022,59(22):228-234.

    SUN Yaoze,GAO Junwei. Defect detection of wheel set tread based on improved YOLOv5[J]. Laser & Optoelectronics Progress,2022,59(22):228-234.
    [14] LIN T S, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, 2017: 936-944.
    [15] LIU Shu, QI Lu, QIN Haifeng, et al. Path aggregation network for instance segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8759 -8768.
    [16] 章程军,胡晓兵,牛洪超. 基于改进YOLOv5的车辆目标检测研究[J]. 四川大学学报(自然科学版),2022,59(5):79-87.

    ZHANG Chengjun,HU Xiaobing,NIU Hongchao. Vehicle object detection based on improved YOLOv5 method[J]. Journal of Sichuan University(Natural Science Edition),2022,59(5):79-87.
    [17] 柏罗,张宏立,王聪. 基于高效注意力和上下文感知的目标跟踪算法[J]. 北京航空航天大学学报,2022,48(7):1222-1232.

    BAI Luo,ZHANG Hongli,WANG Cong. Target tracking algorithm based on efficient attention and context awareness[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1222-1232.
    [18] 袁祎铭,韩婷婷,丁佳骏,等. 基于高效通道注意力机制的龙格库塔去雨网络[J]. 计算机应用,2022,42(增刊1):305-309.

    YUAN Yiming,HAN Tingting,DING Jiajun,et al. Runge kutta network based on efficient channel attention mechanism for image deraining[J]. Journal of Computer Applications,2022,42(S1):305-309.
    [19] 韩兴,张红英,张媛媛. 基于高效通道注意力网络的人脸表情识别[J]. 传感器与微系统,2021,40(1):118-121. doi: 10.13873/J.1000-9787(2021)01-0118-04

    HAN Xing,ZHANG Hongying,ZHANG Yuanyuan. Facial expression recognition based on high efficient channel attention network[J]. Transducer and Microsystem Technologies,2021,40(1):118-121. doi: 10.13873/J.1000-9787(2021)01-0118-04
    [20] 应宇航,任泰安,李伟,等. 一种基于Jetson Nano深度学习的生活垃圾智能分类桶[J]. 计算技术与自动化,2023,42(2):151-157.

    YING Yuhang,REN Tai'an,LI Wei,et al. A Kind of intelligent classified garbage bin based on Jetson Nano deep learning[J]. Computing Technology and Automation,2023,42(2):151-157.
    [21] 苏羽康,林鹏程,郭佳. 基于Jetson Nano的智能快递柜设计与实现[J]. 物联网技术,2022,12(7):53-54,58.

    SU Yukang,LIN Pengcheng,GUO Jia. Design and implementation of intelligent express cabinet based on Jetson Nano[J]. Internet of Things Technologies,2022,12(7):53-54,58.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  89
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2023-06-15
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回