留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别

李一鸣

李一鸣. 基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别[J]. 工矿自动化,2023,49(4):92-98.  doi: 10.13272/j.issn.1671-251x.2022100023
引用本文: 李一鸣. 基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别[J]. 工矿自动化,2023,49(4):92-98.  doi: 10.13272/j.issn.1671-251x.2022100023
LI Yiming. Intelligent recognition of coal and rock based on wavelet packet multi-scale fuzzy entropy and weighted KL divergence[J]. Journal of Mine Automation,2023,49(4):92-98.  doi: 10.13272/j.issn.1671-251x.2022100023
Citation: LI Yiming. Intelligent recognition of coal and rock based on wavelet packet multi-scale fuzzy entropy and weighted KL divergence[J]. Journal of Mine Automation,2023,49(4):92-98.  doi: 10.13272/j.issn.1671-251x.2022100023

基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别

doi: 10.13272/j.issn.1671-251x.2022100023
基金项目: 北京市教委科研计划科技一般项目(KM202011232011);北京信息科技大学校科研基金项目(2025002)。
详细信息
    作者简介:

    李一鸣(1991—),男,山西长治人,讲师,博士,从事煤岩识别、故障诊断与机器人智能感知研究工作,E-mail:liyimingxf@sina.com

  • 中图分类号: TD82

Intelligent recognition of coal and rock based on wavelet packet multi-scale fuzzy entropy and weighted KL divergence

  • 摘要: 垮落煤岩智能识别是智能放煤的前提,通过垮落煤岩实时精准识别可避免人工放煤造成的顶煤“欠放”或“过放”问题。现有煤岩识别方法大多通过数据降维处理获得垮落煤岩特征向量,通过构建识别模型进行煤岩识别,但数据降维、模型建立和训练均需较长时间,一定程度上影响了连续综放开采效率。针对该问题,提出了一种基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别方法。对不同工况(顶煤垮落、岩石垮落、大块顶煤垮落)下垮落煤岩冲击液压支架后尾梁的振动信号进行小波包分解,得到一系列频带;对各频带的序列进行粗粒化,计算各频带多个尺度粗粒化向量的模糊熵,即小波包多尺度模糊熵,将其作为特征向量;以小波包分解后各频带能量与振动信号总能量的比值作为加权KL散度的权重,比较待测未知样本与不同工况下样本特征向量的加权KL散度,实现垮落煤岩的实时精准识别。实验结果表明:基于小波包多尺度模糊熵和加权KL散度的方法可有效识别垮落煤岩类别,而基于多尺度模糊熵和KL散度的方法、基于小波包模糊熵和KL散度的方法识别效果不佳;将小波包多尺度模糊熵作为特征向量时,BP神经网络识别准确率达95%,进一步验证了小波包多尺度模糊熵可作为表征垮落煤岩的特征向量;整个煤岩识别过程耗时为1.063 9 s,基本满足垮落煤岩智能识别实时性需求,大大降低了对连续综放开采效率的影响,综合性能优于同类煤岩识别方法。

     

  • 图  1  3层小波包分解二叉树

    Figure  1.  Binary tree of three-layer wavelet packet decomposition

    图  2  垮落煤岩智能识别流程

    Figure  2.  Intelligent recognition process for collapsed coal and rock

    图  3  不同工况下振动信号时域波形

    Figure  3.  Time domain waveform of vibration signals under different working conditions

    图  4  不同样本小波包分解后各频带重构信号

    Figure  4.  Reconstructed signals in different frequency bands after wavelet packet decomposition of different samples

    图  5  不同方法煤岩识别结果对比

    Figure  5.  Comparison of coal and rock recognition results using different methods

    表  1  BP神经网络训练和识别结果对比

    Table  1.   Comparison of BP neural network training and recognition results

    输入特征向量训练耗时/s识别准确率/%
    小波包多尺度模糊熵22.918 495
    小波包模糊熵6.242 095
    小波包能量20.890 070
    小波包能量熵22.825 885
    (EMD)IMF能量17.031 785
    (EMD)IMF峭度17.243 782.5
    分形盒维数+小波包能量矩[11]18.223 195
    小波包熵和流形学习[12]5.715 492.5
    EEMD+KPCA[13]7.573 195
    下载: 导出CSV

    表  2  垮落煤岩识别方法性能对比

    Table  2.   Performance comparison of recognition methods for collapsed coal and rock

    识别方法耗时/s识别准确率/%
    小波包多尺度模糊熵+加权KL散度1.063 995
    (EMD)IMF能量+BP神经网络17.031 785
    分形盒维数和小波包能量矩+ BP神经网络18.223 195
    EEMD+KPCA+KL散度1.741 695
    下载: 导出CSV
  • [1] 李一鸣,符世琛,李瑞,等. 垮落煤岩性状识别研究[J]. 工矿自动化,2017,43(2):24-28. doi: 10.13272/j.issn.1671-251x.2017.02.006

    LI Yiming,FU Shichen,LI Rui,et al. Reseaech on identification of caving coal and rock traits[J]. Industry and Mine Automation,2017,43(2):24-28. doi: 10.13272/j.issn.1671-251x.2017.02.006
    [2] 吕渊博,王世博,葛世荣,等. 近红外光谱煤岩识别装置研制[J]. 工矿自动化,2022,48(7):32-42. doi: 10.13272/j.issn.1671-251x.17953

    LYU Yuanbo,WANG Shibo,GE Shirong,et al. Development of coal and rock identification device based on near-infrared spectroscopy[J]. Journal of Mine Automation,2022,48(7):32-42. doi: 10.13272/j.issn.1671-251x.17953
    [3] 卢召栋. 近红外光谱煤岩识别算法及风速影响研究[D]. 徐州: 中国矿业大学, 2022.

    LU Zhaodong. Study on algorithm of near infrared spectroscopy for coal and rock identification and influence of wind velocity on it[D]. Xuzhou: China University of Mining and Technology, 2022.
    [4] 毛青晨. 基于图像处理的煤岩智能识别方法研究[D]. 徐州: 中国矿业大学, 2022.

    MAO Qingchen. Research on intelligent identification method of coal and rock based on image processing[D]. Xuzhou: China University of Mining and Technology, 2022.
    [5] 高峰,殷欣,刘泉声,等. 基于塔式池化架构的采掘工作面煤岩图像识别方法[J]. 煤炭学报,2021,46(12):4088-4102. doi: 10.13225/j.cnki.jccs.2021.0624

    GAO Feng,YIN Xin,LIU Quansheng,et al. Coal-rock image recognition method for mining and heading face based on spatial pyramid pooling structure[J]. Journal of China Coal Society,2021,46(12):4088-4102. doi: 10.13225/j.cnki.jccs.2021.0624
    [6] 张斌,苏学贵,段振雄,等. YOLOv2在煤岩智能识别与定位中的应用研究[J]. 采矿与岩层控制工程学报,2020,2(2):94-101.

    ZHANG Bin,SU Xuegui,DUAN Zhenxiong,et al. Application of YOLOv2 in intelligent recognition and location of coal and rock[J]. Journal of Mining and Strata Control Engineering,2020,2(2):94-101.
    [7] 刘斌. 综采面煤岩自然γ射线辐射规律及识别实验研究[D]. 徐州: 中国矿业大学, 2022.

    LIU Bin. Experimental study on natural gamma radiation law and identification of coal and rock in fully mechanized mining face[D]. Xuzhou: China University of Mining and Technology, 2022.
    [8] 韦任,徐良骥,孟雪莹,等. 基于高光谱特征吸收峰的煤岩识别方法[J]. 光谱学与光谱分析,2021,41(6):1942-1948.

    WEI Ren,XU Liangji,MENG Xueying,et al. Coal and rock identification method based on hyper spectral feature absorption peak[J]. Spectroscopy and Spectral Analysis,2021,41(6):1942-1948.
    [9] 李长鹏. 采煤机声信号数据驱动截割模式识别方法研究[D]. 淮南: 安徽理工大学, 2022.

    LI Changpeng. Research on data-driven cutting pattern recognition method of shearer sound signal[D]. Huainan: Anhui University of Science and Technology, 2022.
    [10] 朱世刚. 综放工作面煤岩性状识别方法研究[D]. 北京: 中国矿业大学(北京), 2014.

    ZHU Shigang. Study on coal and rock character recognition method in fully mechanized caving faces[D]. Beijing: China University of Mining & Technology-Beijing, 2014.
    [11] 李一鸣,符世琛,焦亚博,等. 基于分形盒维数和小波包能量矩的垮落煤岩性状识别[J]. 煤炭学报,2017,42(3):803-808. doi: 10.13225/j.cnki.jccs.2016.0729

    LI Yiming,FU Shichen,JIAO Yabo,et al. Collapsing coal-rock identification based on fractal box dimension and wavelet packet energy moment[J]. Journal of China Coal Society,2017,42(3):803-808. doi: 10.13225/j.cnki.jccs.2016.0729
    [12] 李一鸣,符世琛,周俊莹,等. 基于小波包熵和流形学习的垮落煤岩识别[J]. 煤炭学报,2017,42(增刊2):585-593. doi: 10.13225/j.cnki.jccs.2017.0642

    LI Yiming,FU Shichen,ZHOU Junying,et al. Collapsing coal-rock identification based on wavelet packet entropy and manifold learning[J]. Journal of China Coal Society,2017,42(S2):585-593. doi: 10.13225/j.cnki.jccs.2017.0642
    [13] 李一鸣,白龙,蒋周翔,等. 基于EEMD−KPCA和KL散度的垮落煤岩识别[J]. 煤炭学报,2020,45(2):827-835. doi: 10.13225/j.cnki.jccs.2019.0198

    LI Yiming,BAI Long,JIANG Zhouxiang,et al. Caving coal-rock identification based on EEMD-KPCA and KL divergence[J]. Journal of China Coal Society,2020,45(2):827-835. doi: 10.13225/j.cnki.jccs.2019.0198
    [14] 刘伟,华臻,王汝琳. 基于Hilbert谱信息熵的煤矸放落振动特征分析[J]. 中国安全科学学报,2011,21(4):32-37. doi: 10.3969/j.issn.1003-3033.2011.04.006

    LIU Wei,HUA Zhen,WANG Rulin. Vibrational feature analysis for coal gangue caving based on information entropy of Hilbert spectrum[J]. China Safety Science Journal,2011,21(4):32-37. doi: 10.3969/j.issn.1003-3033.2011.04.006
    [15] 王保平,王增才,张万枝. 基于EMD与神经网络的煤岩界面识别方法[J]. 振动. 测试与诊断,2012,32(4):586-590,688.

    WANG Baoping,WANG Zengcai,ZHANG Wanzhi. Coal-rock interface recognition method based on EMD and neural network[J]. Journal of Vibration,Measurement & Diagnosis,2012,32(4):586-590,688.
    [16] 丛晓妍,王增才,王保平,等. 基于EMD与峭度滤波的煤岩界面识别[J]. 振动. 测试与诊断,2015,35(5):950-954,996.

    CONG Xiaoyan,WANG Zengcai,WANG Baoping,et al. Application of filtering method based on EMD and kurtosis in coal-rock interface recognition[J]. Journal of Vibration,Measurement & Diagnosis,2015,35(5):950-954,996.
    [17] 郑近德,陈敏均,程军圣,等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报,2014,27(1):145-151. doi: 10.3969/j.issn.1004-4523.2014.01.020

    ZHENG Jinde,CHEN Minjun,CHENG Junsheng,et al. Multiscale fuzzy entropy and its application in rolling bearing fault diagnosis[J]. Journal of Vibration Engineering,2014,27(1):145-151. doi: 10.3969/j.issn.1004-4523.2014.01.020
    [18] 李晓艳,张子刚,张逸石,等. 一种基于KL散度和类分离策略的特征选择算法[J]. 计算机科学,2012,39(12):224-227. doi: 10.3969/j.issn.1002-137X.2012.12.053

    LI Xiaoyan,ZHANG Zigang,ZHANG Yishi,et al. KL-divergence based feature selection algorithm with the separate-class strategy[J]. Computer Science,2012,39(12):224-227. doi: 10.3969/j.issn.1002-137X.2012.12.053
    [19] 白凤兰,徐珺,刘立伟,等. 基于加权相对熵的二阶马尔可夫模型的进化树重构[J]. 大连交通大学学报,2013,34(5):112-117. doi: 10.3969/j.issn.1673-9590.2013.05.026

    BAI Fenglan,XU Jun,LIU Liwei,et al. Weighted relative entropy for phylogenetic tree based on 2-step Markov model[J]. Journal of Dalian Jiaotong University,2013,34(5):112-117. doi: 10.3969/j.issn.1673-9590.2013.05.026
    [20] 李一鸣. 基于非平稳振动信号的综放工作面垮落煤岩识别方法研究[D]. 北京: 中国矿业大学(北京), 2018.

    LI Yiming. Collapsing coal and rock recognition method based on non-stationary vibration signal in fully mechanized caving face[D]. Beijing: China University of Mining & Technology-Beijing, 2018.
    [21] 王保平. 放顶煤过程中煤矸界面自动识别研究[D]. 济南: 山东大学, 2012.

    WANG Baoping. Research on automatic recognition of the coal-rock interface in top coal caving[D]. Jinan: Shandong University, 2012.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  64
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-04-12
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回