留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带式输送机托辊故障检测方法

武国平

武国平. 带式输送机托辊故障检测方法[J]. 工矿自动化,2023,49(2):149-156.  doi: 10.13272/j.issn.1671-251x.2022100022
引用本文: 武国平. 带式输送机托辊故障检测方法[J]. 工矿自动化,2023,49(2):149-156.  doi: 10.13272/j.issn.1671-251x.2022100022
WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156.  doi: 10.13272/j.issn.1671-251x.2022100022
Citation: WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156.  doi: 10.13272/j.issn.1671-251x.2022100022

带式输送机托辊故障检测方法

doi: 10.13272/j.issn.1671-251x.2022100022
基金项目: 国家自然科学基金项目(51905459)。
详细信息
    作者简介:

    武国平(1966—),男,内蒙古凉城人,教授级高级工程师,主要从事科技创新管理工作,E-mail:10570948@chnenergy.com

  • 中图分类号: TD634

Fault detection method for belt conveyor idler

  • 摘要: 针对现有输煤传送机托辊故障检测方法存在识别精度较低、抗环境干扰能力较差、无法长期稳定运行等问题,提出了一种基于融合信号(TFM)及多输入一维卷积神经网络(MI−1DCNN)的输煤传送机托辊故障检测方法。首先,通过拾音器采集输煤传送机沿线托辊运行的音频信号,采用dB4小波无偏风险估计阈值降噪法对信号进行预处理,消除背景噪声,提高信噪比。然后,对降噪音频信号的时域、频域和梅尔频率倒谱系数(MFCC)及其一阶二阶差分系数进行归一化处理,并进行拼接,得到特征TFM。最后,将TFM输入到多尺度卷积核的MI−1DCNN模型,在网络通道末端进行特征融合,通过Softmax函数完成对正常托辊和故障托辊的分类识别。以某煤矿实际采集的输煤传送机托辊音频信号样本对TFM−MI−1DCNN模型进行试验,结果表明:故障托辊平均识别准确率达98.65%,较改进小波阈值降噪−反向传播−径向基函数网络、MFCC−K 邻近方法−支持向量机的平均识别准确率分别提高了1.50%和1.03%。现场应用结果表明:该方法下故障托辊平均识别准确率为98.4%,说明该方法适用于现场应用。

     

  • 图  1  基于TFM及MI−1DCNN的输煤传送机托辊故障诊断流程

    Figure  1.  Fault diagnosis process of belt conveyor idle based on time-frequency-MFCC and multi-input one-dimensional convolutional neural network

    图  2  小波阈值降噪过程

    Figure  2.  The wavelet threshold denoising process

    图  3  MFCC特征提取流程

    Figure  3.  MFCC feature extraction process

    图  4  MI−1DCNN模型结构

    Figure  4.  MI-1DCNN model structure

    图  5  小波阈值降噪结果

    Figure  5.  Wavelet threshold denoising results

    图  6  故障托辊帧数、维度与MFCC关系

    Figure  6.  Relationship among frame number, dimension and MFCC of fault idler

    图  7  正常托辊帧数、维度与MFCC关系

    Figure  7.  Relationship among frame number, dimension and MFCC of normal idler

    图  8  TFM

    Figure  8.  Time-Frequency-MFCC

    图  9  现场测试流程

    Figure  9.  Field test process

    表  1  不同方法识别结果

    Table  1.   Identification results of different methods

    方法识别
    类型
    识别
    准确率/%
    平均识别
    准确率/%
    改进小波阈值降噪−BP−RBF正常托辊98.9097.15
    故障托辊95.40
    MFCC−KNN−SVM正常托辊99.2597.62
    故障托辊96.00
    本文方法正常托辊99.9398.65
    故障托辊97.38
    下载: 导出CSV

    表  2  机器人现场巡检测试结果

    Table  2.   Test results of robot on-site inspection

    巡检
    日期
    巡检总托
    辊数/组
    人工巡检真实
    故障数/组
    方法报出故障故障托辊
    识别准确
    率/%
    真实故
    障数/组
    误报故
    障数/组
    第1周1279636352797.2
    第2周1212143422897.6
    第3周14063393926100.0
    第4周1125936352197.2
    第5周12653383822100.0
    现场测试故障托辊平均识别准确率 /%98.4
    下载: 导出CSV
  • [1] 蒋卫良,韩东劲. 我国煤矿带式输送机现状与发展趋势[J]. 煤矿机电,2008,39(1):1-6.

    JIANG Weiliang,HAN Dongjin. Development situation and tendency of native mining belt conveyor[J]. Colliery Mechanical & Electrical Technology,2008,39(1):1-6.
    [2] 杨孝新,刘婷婷,刘福明,等. 露天煤矿带式输送机智能巡检机器人[J]. 露天采矿技术,2022,37(4):48-51.

    YANG Xiaoxin,LIU Tingting,LIU Fuming,et al. Intelligent inspection robots for belt conveyors in open-pit coal mines[J]. Opencast Mining Technology,2022,37(4):48-51.
    [3] 周立辉,张永生,孙勇,等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化,2011,35(19):85-88,96.

    ZHOU Lihui,ZHANG Yongsheng,SUN Yong,et al. Development and application of equipment inspection root for smart substations[J]. Automation of Electric Power Systems,2011,35(19):85-88,96.
    [4] 裴文良,张树生,李军伟. 矿用巡检机器人设计及其应用[J]. 制造业自动化,2017,39(2):73-74,94.

    PEI Wenliang,ZHANG Shusheng,LI Junwei. The design and application of inspection robot for mine[J]. Manufacturing Automation,2017,39(2):73-74,94.
    [5] 朱剑锋. 煤矿带式输送机输送带撕裂红外检测系统设计[J]. 新型工业化,2017,7(7):58-61.

    ZHU Jianfeng. Design conveyor belt tear infrared detection system of coal mine ribbon conveyer[J]. The Journal of New Industrialization,2017,7(7):58-61.
    [6] 韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012,508(6):57-59.

    HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012,508(6):57-59.
    [7] 孙维,刁冬梅. 基于φ−OTDR技术的带式输送机托辊故障检测[J]. 工矿自动化,2016,42(8):9-12.

    SUN Wei,DIAO Dongmei. Roller fault detection of belt conveyor based on φ-OTDR technology[J]. Industry and Mine Automation,2016,42(8):9-12.
    [8] 曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86.

    CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86.
    [9] 郝洪涛,苏耀瑞,丁文捷,等.托辊非接触式故障识别方法研究[J/OL].机械科学与技术:1-8[2022-08-25]. DOI: 10.13433/j.cnki.1003-8728.20220008.

    HAO Hongtao,SU Yaorui,DING Wenjie,et al.Study on the method of non-contact fault identification of rollers[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-8[2022-08-25]. DOI:10.13433/j.cnki.1003-8728.20220008.
    [10] 伊鑫,杨明锦,杨林顺,等. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J]. 选煤技术,2020(5):94-102.

    YI Xin,YANG Mingjin,YANG Linshun,et al. The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor's idlers[J]. Coal Preparation Technology,2020(5):94-102.
    [11] 蔡安江,李涛,王洪波,等. 带式输送机故障准确诊断方法[J]. 金属矿山,2020,48(4):130-134.

    CAI Anjiang,LI Tao,WANG Hongbo,et al. Accurate diagnosis method for belt conveyor fault[J]. Metal Mine,2020,48(4):130-134.
    [12] 葛江华,刘奇,王亚萍,等. 支持张量机与KNN−AMDM决策融合的齿轮箱故障诊断方法[J]. 振动工程学报,2018,31(6):1093-1101.

    GE Jianghua,LIU Qi,WANG Yaping,et al. Fault diagnosis method of gearbox supporting tension machine and KNN-AMDM decision fusion[J]. Journal of Vibration Engineering,2018,31(6):1093-1101.
    [13] ZHAO Ruimei, CUI Huimin. Improved threshold denoising method based on wavelet transform[C]. 7th International Conference on Modelling, Identification and Control (ICMIC), Sousse, 2015: 1354-1359.
    [14] 蔡铁,朱杰. 小波阈值降噪算法中最优分解层数的自适应选择[J]. 控制与决策,2006,21(2):217-220.

    CAI Tie,ZHU Jie. Adaptive selection of optimal decomposition level in threshold de-noising algorithm based on wavelet[J]. Control and Decision,2006,21(2):217-220.
    [15] 王维,张英堂,任国全. 小波阈值降噪算法中最优分解层数的自适应确定及仿真[J]. 仪器仪表学报,2009,30(3):526-530.

    WANG Wei,ZHANG Yingtang,REN Guoquan. Adaptive selection and simulation of optimal decomposition level in threshold de-noising algorithm based on wavelet transform[J]. Chinese Journal of Scientific Instrument,2009,30(3):526-530.
    [16] 李虹,徐小力,吴国新,等. 基于MFCC的语音情感特征提取研究[J]. 电子测量与仪器学报,2017,31(3):448-453.

    LI Hong,XU Xiaoli,WU Guoxin,et al. Research on speech emotion feature extraction based on MFCC[J]. Journal of Electronic Measurement and Instrumentation,2017,31(3):448-453.
    [17] 吕霄云. 基于MFCC和GMM的异常声音识别算法研究[D]. 成都: 西南交通大学, 2010.

    LYU Xiaoyun. Research on abnormal audio recognition algorithm based on MFCC and GMM[D]. Chengdu: Southwest Jiaotong University, 2010.
    [18] 曲建岭,余路,袁涛,等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报,2018,39(7):134-143. doi: 10.19650/j.cnki.cjsi.J1803286

    QU Jianling,YU Lu,YUAN Tao,et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument,2018,39(7):134-143. doi: 10.19650/j.cnki.cjsi.J1803286
    [19] 吴春志,江鹏程,冯辅周,等. 基于一维卷积神经网络的齿轮箱故障诊断[J]. 振动与冲击,2018,37(22):51-56.

    WU Chunzhi,JIANG Pengcheng,FENG Fuzhou,et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock,2018,37(22):51-56.
    [20] 叶壮,余建波. 基于多通道一维卷积神经网络特征学习的齿轮箱故障诊断方法[J]. 振动与冲击,2020,39(20):55-66.

    YE Zhuang,YU Jianbo. Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2020,39(20):55-66.
    [21] 黄华,姚嘉靖,王永和,等. 基于多通道一维卷积神经网络的刀具磨损动态预测模型[J]. 振动与冲击,2023,42(2):60-67.

    HUANG Hua,YAO Jiajing,WANG Yonghe,et al. Dynamic prediction model for tool wear based on a multi-channel one-dimensional convolutional neural network[J]. Journal of Vibration and Shock,2023,42(2):60-67.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  66
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-02-08
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回