留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性模型划分的煤流体积测量

陈湘源 薛旭升

陈湘源,薛旭升. 基于线性模型划分的煤流体积测量[J]. 工矿自动化,2023,49(7):35-40, 106.  doi: 10.13272/j.issn.1671-251x.2022090085
引用本文: 陈湘源,薛旭升. 基于线性模型划分的煤流体积测量[J]. 工矿自动化,2023,49(7):35-40, 106.  doi: 10.13272/j.issn.1671-251x.2022090085
CHEN Xiangyuan, XUE Xusheng. Coal flow volume measurement based on linear model partitioning[J]. Journal of Mine Automation,2023,49(7):35-40, 106.  doi: 10.13272/j.issn.1671-251x.2022090085
Citation: CHEN Xiangyuan, XUE Xusheng. Coal flow volume measurement based on linear model partitioning[J]. Journal of Mine Automation,2023,49(7):35-40, 106.  doi: 10.13272/j.issn.1671-251x.2022090085

基于线性模型划分的煤流体积测量

doi: 10.13272/j.issn.1671-251x.2022090085
基金项目: 陕西省科技厅秦创原“科学家+工程师”项目(2023KXJ-238)。
详细信息
    作者简介:

    陈湘源(1972—),男,内蒙古鄂尔多斯人,高级工程师,硕士,主要研究方向为智能化与机电系统安全,E-mail:shyscxy@163

  • 中图分类号: TD634

Coal flow volume measurement based on linear model partitioning

  • 摘要: 针对基于线激光条纹的带式输送机煤量测量精度和计算效率较低、胶带运行过程中存在拖尾现象及跑偏、飘带造成的数据不对齐问题,提出了一种基于线性模型划分的煤流体积测量方法。首先,利用高速线激光相机进行煤流数据采集;然后,通过基于线性模型划分的点云配准算法将胶带底部点云数据与煤流表面数据融合,形成完整的三维煤流数据;最后,通过煤流体积测量模型实现对煤流体积的测量。试验结果表明,基于线性模型划分的煤流体积测量方法在高粉尘环境、煤流表面洒水环境、昏暗环境及正常光照环境下测量粗糙表面铁块、光滑表面铁块及实物(煤和矸石)所得结果精度均在95%以上;且光滑表面铁块较粗糙表面铁块在4种模拟环境下的测量精度高,说明物体表面平整度越好测量精度越高,环境对测量精度影响不大。实际测试结果表明,基于线性模型划分的煤流体积测量方法的测量精度均在97%以上,对应平均耗时均在80 ms以内;与基于KD树的测量方法相比,整体精度提高了6%以上,处理时效性提高了1倍。

     

  • 图  1  煤流边界

    Figure  1.  Coal flow boundary

    图  2  胶带煤流三角化模型

    Figure  2.  Triangulation model of belt coal flow

    图  3  试验平台

    Figure  3.  Experimental platform

    图  4  带式输送机工作环境

    Figure  4.  Working environment of belt conveyor

    图  5  试验素材

    Figure  5.  Experimental material

    图  6  实际场景安装效果

    Figure  6.  Actual scene installation rendering

    表  1  各环境下煤流体积测量精度

    Table  1.   Coal flow volume measurement precision in various environments %

    试验素材 测量精度
    正常光照环境高粉尘环境表面洒水环境昏暗环境
    粗糙表面铁块97.597.197.397.7
    光滑表面铁块98.298.398.598.7
    煤和矸石96.195.995.896.3
    下载: 导出CSV

    表  2  实际场景煤流体积测量结果

    Table  2.   Coal flow volume measurement results in actual scenarios

    时间/min测量结果/m3测量精度/%平均处理时
    间/ms
    本文测量算法基于KD树测量算法电子胶带秤本文测量方法基于KD树测量方法本文测量方法基于KD树测量方法
    5509.635462.301510.26799.990.675167
    111 208.7001 060.4541 175.6797.390.273158
    303 115.8302 767.1203 084.8699.089.776178
    505 520.7104 866.0705 400.7497.890.175169
    808 420.4807 402.5808 271.0498.289.574163
    12012 639.21011 255.05012 409.198.290.778189
    下载: 导出CSV
  • [1] 吕鹏飞,何敏,陈晓晶,等. 智慧矿山发展与展望[J]. 工矿自动化,2018,44(9):84-88.

    LYU Pengfei,HE Min,CHEN Xiaojing,et al. Development and prospect of wisdom mine[J]. Industry and Mine Automation,2018,44(9):84-88.
    [2] 夏蒙健,刘洋. 煤流智能调速策略研究[J]. 工矿自动化,2022,48(增刊2):108-111.

    XIA Mengjian,LIU Yang. Study on intelligent speed regulation strategy of coal flow[J]. Journal of Mine Automation,2022,48(S2):108-111.
    [3] 王桂梅,逯圣辉,刘杰辉,等. 基于图像处理的带式输送机煤体积计量[J]. 计量学报,2020,41(6):724-728.

    WANG Guimei,LU Shenghui,LIU Jiehui,et al. Coal volume measurement of belt conveyor based on image processing[J]. Acta Metrologica Sinica,2020,41(6):724-728.
    [4] 郝丁丁. 基于激光散斑的带式输送机煤流负载监测方法研究[D]. 西安: 西安科技大学, 2020.

    HAO Dingding. Research on load monitoring method of coal flow of belt conveyor based on laser speckle[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [5] 张抗余. 大倾角下运带式输送机设计优化与应用[J]. 山东煤炭科技,2021,39(5):125-127.

    ZHANG Kangyu. Design optimization and application of large inclined downward belt conveyor[J]. Shandong Coal Science and Technology,2021,39(5):125-127.
    [6] 肖华明,孙士娇,曹连民. 矿用带式输送机新技术应用前景分析[J]. 工矿自动化,2018,44(4):34-39.

    XIAO Huaming,SUN Shijiao,CAO Lianmin. Application prospect analysis of new technologies of mine-used belt conveyor[J]. Industry and Mine Automation,2018,44(4):34-39.
    [7] 郭振华. 北辛窑St4000型带式输送机监控系统设计研究[J]. 煤矿现代化,2021,30(3):125-126,129.

    GUO Zhenhua. Design and research on monitoring system of St4000 belt conveyor in Beixin Kiln[J]. Coal Mine Modernization,2021,30(3):125-126,129.
    [8] 张少宾. 基于实况负载的带式输送机智能控制研究[D]. 北京: 煤炭科学研究总院, 2019.

    ZHANG Shaobin. Control research of belt conveyor intelligence based on live load[D]. Beijing: China Coal Research Institute, 2019.
    [9] 崔振国. 基于机器视觉的带式输送机煤量监测系统研究[D]. 徐州: 中国矿业大学, 2021.

    CUI Zhenguo. Study on coal quantity monitoring system of belt conveyor based on machine vision[J]. Xuzhou: China University of Mining and Technology, 2021.
    [10] 关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.

    GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24.
    [11] 任凤国,刘学红,任安祥,等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27.

    REN Fengguo,LIU Xuehong,REN Anxiang,et al. Research on improving measurements stability of mine used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27.
    [12] 厉达,何福胜. 皮带秤技术现状及发展趋势[J]. 衡器,2012,41(2):1-5.

    LI Da,HE Fusheng. Situation and the development tendency of belt scale technology[J]. Weighing Instrument,2012,41(2):1-5.
    [13] MIHUT N M. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors[J]. IOP Conference Series: Materials Science and Engineering, 2015, 9(1). DOI: 10.1088/1757-899X/95/1/012089.
    [14] 汪心悦,乔铁柱,庞宇松,等. 基于TOF深度图像修复的输送带煤流检测方法[J]. 工矿自动化,2022,48(1):40-44,63.

    WANG Xinyue,QIAO Tiezhu,PANG Yusong,et al. Coal flow detection method for conveyor belt based on TOF depth image restoration[J]. Industry and Mine Automation,2022,48(1):40-44,63.
    [15] 贾佳璐,应忍冬,潘光华,等. 基于TOF相机的三维重建技术[J]. 计算机应用与软件,2020,37(4):127-131.

    JIA Jialu,YING Rendong,PAN Guanghua,et al. 3D rescontruction based on TOF camera[J]. Computer Applications and Software,2020,37(4):127-131.
    [16] FLORIAN K,KRISTIAN B,THOMAS P,et al. Second order total generalized variation (TGV) for MRI[J]. Magnetic Resonance in Medicine,2010,65(2):480-491.
    [17] 刘娇丽,李素梅,李永达,等. 基于TOF与立体匹配相融合的高分辨率深度获取[J]. 信息技术,2016(12):190-193.

    LIU Jiaoli,LI Sumei,LI Yongda,et al. High-resolution depths maps based on TOF-stereo fusion[J]. Information Technology,2016(12):190-193.
    [18] JUNG J,LEE J,JEONG Y,et al. Time-of-flight sensor calibration for a color and depth camera pair[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(7):1501-1513. doi: 10.1109/TPAMI.2014.2363827
    [19] 代伟, 赵杰, 杨春雨, 等基于双目视觉深度感知的带式输送机煤量检测方法[J]煤炭学报, 2017, 42(增刊2): 547-555.

    DAI Wei, ZHAO Jie, YANG Chunyu, et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society, 2017, 42(S2): 547: 555.
    [20] 李萍,任安祥. 基于机器视觉的带送煤炭体积测量方法研究[J]. 工矿自动化,2018,44(4):24-29.

    LI Ping,REN Anxiang. Research on volume measurement method of coal on belt conveying based on machine vision[J]. Industry and Mine Automation,2018,44(4):24-29.
    [21] 杨会玲,柳红岩,李岩,等. 漂移扫描相机中拖尾现象快速消除方法[J]. 计算机应用,2015,35(9):2616-2618.

    YANG Huiling,LIU Hongyan,LI Yan,et al. Fast removal algorithm for trailing smear effect in CCD drift-scan star image[J]. Journal of Computer Applications,2015,35(9):2616-2618.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  43
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-07-14
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回