Coal flow volume measurement based on linear model partitioning
-
摘要: 针对基于线激光条纹的带式输送机煤量测量精度和计算效率较低、胶带运行过程中存在拖尾现象及跑偏、飘带造成的数据不对齐问题,提出了一种基于线性模型划分的煤流体积测量方法。首先,利用高速线激光相机进行煤流数据采集;然后,通过基于线性模型划分的点云配准算法将胶带底部点云数据与煤流表面数据融合,形成完整的三维煤流数据;最后,通过煤流体积测量模型实现对煤流体积的测量。试验结果表明,基于线性模型划分的煤流体积测量方法在高粉尘环境、煤流表面洒水环境、昏暗环境及正常光照环境下测量粗糙表面铁块、光滑表面铁块及实物(煤和矸石)所得结果精度均在95%以上;且光滑表面铁块较粗糙表面铁块在4种模拟环境下的测量精度高,说明物体表面平整度越好测量精度越高,环境对测量精度影响不大。实际测试结果表明,基于线性模型划分的煤流体积测量方法的测量精度均在97%以上,对应平均耗时均在80 ms以内;与基于KD树的测量方法相比,整体精度提高了6%以上,处理时效性提高了1倍。Abstract: The precision and computational efficiency of coal quantity measurement for belt conveyors based on linear laser stripes are low. There is a trailing phenomenon during belt operation, as well as data misalignment caused by deviation and drifting. In order to solve the above problems, a coal flow volume measurement method based on linear model partitioning is proposed. Firstly, the method uses a high-speed line laser camera to collect coal flow data. Secondly, a point cloud registration algorithm based on linear model partitioning is used to fuse the point cloud data at the bottom of the belt with the surface data of the coal flow, forming a complete three-dimensional coal flow data. Finally, the coal flow volume measurement is achieved through a coal flow volume measurement model. The experimental results show that the coal flow volume measurement method based on linear model partitioning has a precision of over 95% when measuring rough surface iron blocks, smooth surface iron blocks, and physical objects (coal and gangue) in high dust environment, coal flow surface watering environment, dim environment, and normal lighting environment. Moreover, the measurement precision of smooth-surface iron blocks is higher than that of rough-surface iron blocks in four simulated environments. It indicates that the better the flatness of the object surface, the higher the measurement precision. The environment has little impact on measurement precision. The actual test results show that the coal flow volume measurement method based on linear model partitioning has a measurement precision of over 97%. The corresponding average time is within 80 ms. Compared with the measurement method based on the KD tree, the overall precision has been improved by more than 6% and the processing timeliness has been doubled.
-
表 1 各环境下煤流体积测量精度
Table 1. Coal flow volume measurement precision in various environments
% 试验素材 测量精度 正常光照环境 高粉尘环境 表面洒水环境 昏暗环境 粗糙表面铁块 97.5 97.1 97.3 97.7 光滑表面铁块 98.2 98.3 98.5 98.7 煤和矸石 96.1 95.9 95.8 96.3 表 2 实际场景煤流体积测量结果
Table 2. Coal flow volume measurement results in actual scenarios
时间/min 测量结果/m3 测量精度/% 平均处理时
间/ms本文测量算法 基于KD树测量算法 电子胶带秤 本文测量方法 基于KD树测量方法 本文测量方法 基于KD树测量方法 5 509.635 462.301 510.267 99.9 90.6 75 167 11 1 208.700 1 060.454 1 175.67 97.3 90.2 73 158 30 3 115.830 2 767.120 3 084.86 99.0 89.7 76 178 50 5 520.710 4 866.070 5 400.74 97.8 90.1 75 169 80 8 420.480 7 402.580 8 271.04 98.2 89.5 74 163 120 12 639.210 11 255.050 12 409.1 98.2 90.7 78 189 -
[1] 吕鹏飞,何敏,陈晓晶,等. 智慧矿山发展与展望[J]. 工矿自动化,2018,44(9):84-88.LYU Pengfei,HE Min,CHEN Xiaojing,et al. Development and prospect of wisdom mine[J]. Industry and Mine Automation,2018,44(9):84-88. [2] 夏蒙健,刘洋. 煤流智能调速策略研究[J]. 工矿自动化,2022,48(增刊2):108-111.XIA Mengjian,LIU Yang. Study on intelligent speed regulation strategy of coal flow[J]. Journal of Mine Automation,2022,48(S2):108-111. [3] 王桂梅,逯圣辉,刘杰辉,等. 基于图像处理的带式输送机煤体积计量[J]. 计量学报,2020,41(6):724-728.WANG Guimei,LU Shenghui,LIU Jiehui,et al. Coal volume measurement of belt conveyor based on image processing[J]. Acta Metrologica Sinica,2020,41(6):724-728. [4] 郝丁丁. 基于激光散斑的带式输送机煤流负载监测方法研究[D]. 西安: 西安科技大学, 2020.HAO Dingding. Research on load monitoring method of coal flow of belt conveyor based on laser speckle[D]. Xi'an: Xi'an University of Science and Technology, 2020. [5] 张抗余. 大倾角下运带式输送机设计优化与应用[J]. 山东煤炭科技,2021,39(5):125-127.ZHANG Kangyu. Design optimization and application of large inclined downward belt conveyor[J]. Shandong Coal Science and Technology,2021,39(5):125-127. [6] 肖华明,孙士娇,曹连民. 矿用带式输送机新技术应用前景分析[J]. 工矿自动化,2018,44(4):34-39.XIAO Huaming,SUN Shijiao,CAO Lianmin. Application prospect analysis of new technologies of mine-used belt conveyor[J]. Industry and Mine Automation,2018,44(4):34-39. [7] 郭振华. 北辛窑St4000型带式输送机监控系统设计研究[J]. 煤矿现代化,2021,30(3):125-126,129.GUO Zhenhua. Design and research on monitoring system of St4000 belt conveyor in Beixin Kiln[J]. Coal Mine Modernization,2021,30(3):125-126,129. [8] 张少宾. 基于实况负载的带式输送机智能控制研究[D]. 北京: 煤炭科学研究总院, 2019.ZHANG Shaobin. Control research of belt conveyor intelligence based on live load[D]. Beijing: China Coal Research Institute, 2019. [9] 崔振国. 基于机器视觉的带式输送机煤量监测系统研究[D]. 徐州: 中国矿业大学, 2021.CUI Zhenguo. Study on coal quantity monitoring system of belt conveyor based on machine vision[J]. Xuzhou: China University of Mining and Technology, 2021. [10] 关丙火. 基于激光扫描的带式输送机瞬时煤量检测方法[J]. 工矿自动化,2018,44(4):20-24.GUAN Binghuo. Detection method of instantaneous coal quantity of belt conveyor based on laser scanning[J]. Industry and Mine Automation,2018,44(4):20-24. [11] 任凤国,刘学红,任安祥,等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27.REN Fengguo,LIU Xuehong,REN Anxiang,et al. Research on improving measurements stability of mine used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27. [12] 厉达,何福胜. 皮带秤技术现状及发展趋势[J]. 衡器,2012,41(2):1-5.LI Da,HE Fusheng. Situation and the development tendency of belt scale technology[J]. Weighing Instrument,2012,41(2):1-5. [13] MIHUT N M. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors[J]. IOP Conference Series: Materials Science and Engineering, 2015, 9(1). DOI: 10.1088/1757-899X/95/1/012089. [14] 汪心悦,乔铁柱,庞宇松,等. 基于TOF深度图像修复的输送带煤流检测方法[J]. 工矿自动化,2022,48(1):40-44,63.WANG Xinyue,QIAO Tiezhu,PANG Yusong,et al. Coal flow detection method for conveyor belt based on TOF depth image restoration[J]. Industry and Mine Automation,2022,48(1):40-44,63. [15] 贾佳璐,应忍冬,潘光华,等. 基于TOF相机的三维重建技术[J]. 计算机应用与软件,2020,37(4):127-131.JIA Jialu,YING Rendong,PAN Guanghua,et al. 3D rescontruction based on TOF camera[J]. Computer Applications and Software,2020,37(4):127-131. [16] FLORIAN K,KRISTIAN B,THOMAS P,et al. Second order total generalized variation (TGV) for MRI[J]. Magnetic Resonance in Medicine,2010,65(2):480-491. [17] 刘娇丽,李素梅,李永达,等. 基于TOF与立体匹配相融合的高分辨率深度获取[J]. 信息技术,2016(12):190-193.LIU Jiaoli,LI Sumei,LI Yongda,et al. High-resolution depths maps based on TOF-stereo fusion[J]. Information Technology,2016(12):190-193. [18] JUNG J,LEE J,JEONG Y,et al. Time-of-flight sensor calibration for a color and depth camera pair[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(7):1501-1513. doi: 10.1109/TPAMI.2014.2363827 [19] 代伟, 赵杰, 杨春雨, 等基于双目视觉深度感知的带式输送机煤量检测方法[J]煤炭学报, 2017, 42(增刊2): 547-555.DAI Wei, ZHAO Jie, YANG Chunyu, et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society, 2017, 42(S2): 547: 555. [20] 李萍,任安祥. 基于机器视觉的带送煤炭体积测量方法研究[J]. 工矿自动化,2018,44(4):24-29.LI Ping,REN Anxiang. Research on volume measurement method of coal on belt conveying based on machine vision[J]. Industry and Mine Automation,2018,44(4):24-29. [21] 杨会玲,柳红岩,李岩,等. 漂移扫描相机中拖尾现象快速消除方法[J]. 计算机应用,2015,35(9):2616-2618.YANG Huiling,LIU Hongyan,LI Yan,et al. Fast removal algorithm for trailing smear effect in CCD drift-scan star image[J]. Journal of Computer Applications,2015,35(9):2616-2618.