Simulation analysis of the influence of gangue layer morphology on the cutting characteristics of the roadheader bolter
-
摘要: 巷道实际掘进过程中掘进工作面除全煤层外还有各种矸石层,矸石层的存在会影响掘锚机掘进效率。然而目前大多以全煤层工作面为研究背景对滚筒截割特性进行分析,或考虑的矸石层形态较为单一。针对上述问题,以MB670−1型掘锚机为研究对象,利用Pro/E软件绘制掘锚机三维模型,将模型导入RecurDyn软件并添加相应的运动副,之后再导入EDEM软件,建立EDEM−RecurDyn耦合仿真模型。从滚筒截割性能、滚筒位移和滚筒振动3个方面仿真分析了水平矸石层、斜矸石层、半矸石层3种矸石层形态对掘锚机截割特性的影响,结果表明:① 与全煤层相比,在矸石层条件下滚筒截割阻力、载荷波动系数、截割比能耗均有所增加,尤其在斜矸石层条件下增加最明显,截割阻力均值增大了35.61%,X轴(沿掘锚机掘进方向)、Y轴(垂直于巷道底板方向)、Z轴(与滚筒轴平行方向)载荷波动系数分别增大了26.79%,25.39%,61.28%,截割比能耗增大了37.21%。② 矸石层的存在使滚筒位移有所减小,相比于全煤层,在水平矸石层、斜矸石层、半矸石层条件下滚筒位移分别缩短了53,89,14 mm。③ 滚筒在截割含矸石层工作面时产生的振动幅度远大于截割全煤层工作面时。④ 矸石层形态对掘锚机截割特性的影响程度为斜矸石层>水平矸石层>半矸石层。Abstract: In the actual excavation process of the roadway, besides the coal seam, there are various types of gangue layers on the working face. The existence of these gangue layers will affect the cutting efficiency of the roadheader bolter. However, most current studies analyze the cutting characteristics of the drum with the background of a fully-coal working face or consider a relatively simple morphology of the gangue layer. To solve the above problems, taking the MB670-1 roadheader bolter as the research object, a 3D model of the roadheader bolter is created using Pro/E software. The model is input into RecurDyn software and the corresponding motion pair is added. The model is then input into EDEM software to establish an EDEM-RecurDyn coupling simulation model. The influence of three types of gangue layers, horizontal gangue layers, inclined gangue layers, and semi-gangue layers, on the cutting characteristics of the roadheader bolter is simulated and analyzed from three aspects: drum cutting performance, drum displacement and drum vibration. The results show the following points. ① Compared with the full coal seam, under the conditions of gangue layers, the drum cutting resistance, load fluctuation coefficient, and cutting specific energy consumption all increase. They increase most significantly under the condition of inclined rock layers. The average cutting resistance increases by 35.61%. The load fluctuation coefficients along the X-axis (along excavation direction of the roadheader bolter), Y-axis (perpendicular to the roadway bottom direction), and Z-axis (parallel to the drum axis direction) increase by 26.79%, 25.39%, and 61.28% respectively. The cutting specific energy consumption increases by 37.21%. ② The existence of gangue layers causes a decrease in the displacement of the drum. Compared with the full-coal seam, the displacement of the drum is reduced by 53, 89, 14 mm in the horizontal gangue layer, inclined gangue layer, and gangue layer respectively. ③ The vibration amplitude generated by the drum when cutting a working face containing gangue is much greater than when cutting a working face containing full-coal seams. ④ The influence of the morphology of the gangue layer on the cutting characteristics of the roadheader bolter is in the order of inclined gangue layer > horizontal gangue layer > semi-gangue layer.
-
表 1 煤岩材料参数
Table 1. Material parameters of coal and rock
材料 密度/(kg·m−3) 泊松比 剪切模量/Pa 煤 1 420 0.32 1.9×108 矸石 2 350 0.10 1.2×109 表 2 掘锚机材料参数
Table 2. Material parameters of roadheader bolter
名称 材料 密度/(kg·m−3) 泊松比 剪切模量/Pa 截齿 42CrMo 7 800 0.3 8.2×1010 筒毂 16Mn 7 800 0.3 8.4×1010 其余部分 合金钢 7 800 0.3 7.0×1010 表 3 接触参数
Table 3. Contact parameters
颗粒−颗粒 恢复因数 静摩擦因数 动摩擦因数 煤−煤 0.5 0.6 0.05 煤−矸石 0.5 0.7 0.08 煤−滚筒 0.5 0.4 0.05 矸石−矸石 0.6 0.8 0.10 矸石−滚筒 0.6 0.5 0.07 表 4 颗粒粘结参数
Table 4. Particle bonding parameters
颗粒−颗粒 单位面积法
向刚度/(N·m−3)单位面积切
向刚度/(N·m−3)法向应力/
Pa切向应力/
Pa煤−煤 6.0×108 1.8×109 4.0×104 6.0×105 煤−矸石 1.0×109 2.4×109 6.8×104 8.0×106 矸石−矸石 2.8×109 2.7×109 1.9×105 9.0×106 表 5 不同形态矸石层参数
Table 5. Parameters of different gangue layer
矸石层形态 箱体尺寸/m 箱体体积/m³ 矸石颗粒数量/个 长 宽 高 水平矸石层 5.50 1.5 0.3 2.475 18 954 斜矸石层 5.50 1.5 0.3 19 026 半矸石层 2.75 1.5 0.6 19 105 表 6 不同形态矸石层下滚筒截割阻力均值
Table 6. Mean cutting resistance of drum under different gangue layers
矸石层形态 截割阻力均值/N 截割阻力均值增长率/% 全煤层 6.74×104 — 水平矸石层 8.93×104 32.49 斜矸石层 9.14×104 35.61 半矸石层 8.48×104 25.82 表 7 不同矸石层形态下滚筒载荷波动系数
Table 7. Drum load fluctuation coefficient under different gangue layers
矸石层形态 方向 载荷均值/N 载荷波动系数 载荷波动系数增长率/% 全煤层 X轴 −9.46×104 0.56 — Y轴 6.74×104 0.63 — Z轴 3.19×103 4.52 — 水平矸石层 X轴 −1.24×104 0.58 3.57 Y轴 8.93×104 0.68 7.94 Z轴 5.14×103 5.46 20.79 斜矸石层 X轴 −1.49×104 0.71 26.79 Y轴 9.14×104 0.79 25.39 Z轴 3.56×103 7.29 61.28 半矸石层 X轴 −1.17×105 0.57 1.79 Y轴 8.48×104 0.66 4.76 Z轴 7.58×103 4.80 6.19 表 8 不同形态矸石层下滚筒截割比能耗
Table 8. Specific cutting energy consumption of drum under different gangue layers
矸石层形态 截割比能耗/(kW·h·m−3) 截割比能耗增长率/% 全煤层 3.01 — 水平矸石层 3.45 14.62 斜矸石层 4.13 37.21 半矸石层 3.15 4.65 -
[1] 刘畅,姜鹏飞,王子越,等. 煤巷快速成巷技术现状及应用效果评价方法研究[J]. 煤炭科学技术,2020,48(11):26-33.LIU Chang,JIANG Pengfei,WANG Ziyue,et al. Research on current situation of rapid driving technology in coal roadway and its assessment method of application effect[J]. Coal Science and Technology,2020,48(11):26-33. [2] 李平. 煤矿巷道掘锚一体化快速掘进技术研究[J]. 能源与环保,2021,43(2):161-166.LI Ping. Research on integrated rapid excavation technology of tunnel driving and anchoring in coal mine[J]. China Energy and Environmental Protection,2021,43(2):161-166. [3] 王涛,石虎,刘雷. 掘锚机在煤巷快速掘进中的应用[J]. 中国新技术新产品,2022(12):87-89.WANG Tao,SHI Hu,LIU Lei. Application of anchor digger in fast driving of coal roadway[J]. New Technology & New Products of China,2022(12):87-89. [4] 刘敏. 浅谈采矿新技术的应用现状及其发展趋势——以MB670掘锚机为例[J]. 世界有色金属,2017(12):91,93.LIU Min. Application status and development trend of new mining technology-taking MB670 anchor & dig machine as an example[J]. World Nonferrous Metals,2017(12):91,93. [5] 苗圩巍,颜世铛,李纪强,等. 国内外掘锚机组的发展现状及发展趋势[J]. 机械设计,2020,37(增刊1):287-290.MIAO Weiwei,YAN Shidang,LI Jiqiang,et al. Development status and trend of excavation equipment with bolting unit at home and abroad[J]. Journal of Machine Design,2020,37(S1):287-290. [6] 姜建红. 掘锚机智能化综合控制技术的研究[J]. 机械管理开发,2021,36(4):232-233.JIANG Jianhong. Research on intelligent integrated control technology of anchor excavator[J]. Mechanical Management and Development,2021,36(4):232-233. [7] 张敬东. 矿井采煤机多工况下的机械性能分析[J]. 煤炭技术,2013,32(11):37-39.ZHANG Jingdong. Analysis of mechanical properties of coal machine under multiple working conditions[J]. Coal Technology,2013,32(11):37-39. [8] 刘伟. 复杂煤层条件下滚筒截割性能影响分析[J]. 机械管理开发,2022,37(8):99-100.LIU Wei. Analysis of the influence analysis of drum cut-off performance under complex coal seam conditions[J]. Mechanical Management and Development,2022,37(8):99-100. [9] 张强,张晓宇. 不同工况下采煤机滚筒截割性能研究[J]. 应用力学学报,2021,38(6):2360-2368.ZHANG Qiang,ZHANG Xiaoyu. Cutting performance of shearer drum under different working conditions[J]. Chinese Journal of Applied Mechanics,2021,38(6):2360-2368. [10] 张强,张晓宇. 采煤机滚筒截割性能数值模拟[J]. 辽宁工程技术大学学报(自然科学版),2021,40(4):367-377.ZHANG Qiang,ZHANG Xiaoyu. Numerical simulation of shearer drum cutting performance[J]. Journal of Liaoning Technical University(Natural Science Edition),2021,40(4):367-377. [11] 毛君,刘歆妍,陈洪月,等. 煤层倾角对滚筒工作性能影响的仿真研究[J]. 机械强度,2019,41(3):673-681.MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Simulation study on the effect of coal seam dip angle on drum work performance[J]. Journal of Mechanical Strength,2019,41(3):673-681. [12] 毛君,刘歆妍,陈洪月,等. 基于EDEM的采煤机滚筒工作性能的仿真研究[J]. 煤炭学报,2017,42(4):1069-1077.MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Simulation of shearer drum cutting performance based on EDEM[J]. Journal of China Coal Society,2017,42(4):1069-1077. [13] 万理想. 不同厚度含夹矸煤层的采煤机螺旋滚筒截割性能研究[J]. 煤矿机械,2022,43(6):39-44.WAN Lixiang. Study on cutting performance of shearer spiral drum in different thickness coal seam with gangue[J]. Coal Mine Machinery,2022,43(6):39-44. [14] 杨霞. 张家峁煤矿5−2煤综采面胶运顺槽锚杆支护技术研究[D]. 西安: 西安科技大学, 2017.YANG Xia. Technological research on bolting for belt conveying crossheading on fully mechanized coal face of 5−2 coal in Zhangjiamao Coal Mine[D]. Xi'an: Xi'an University of Science and Technology, 2017. [15] SU O,AKCIN N A. Numerical simulation of rock cutting using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(3):434-442. doi: 10.1016/j.ijrmms.2010.08.012 [16] 李磊. 离散元法在农业工程中的研究现状及展望[J]. 中国农机化学报,2015,36(5):345-348.LI Lei. Research progress and prospects of DEM in agricultural engineering application[J]. Journal of Chinese Agricultural Mechanization,2015,36(5):345-348. [17] 徐宝鑫. 截割头截齿安装参数的离散元仿真分析[D]. 沈阳: 沈阳理工大学, 2015.XU Baoxin. DEM simulation analysis of pick assembly parameters of cutting head[D]. Shenyang: Shenyang Ligong University, 2015. [18] 包建华,王阳阳,张悦. 基于离散元的双滚筒采煤机截割过程仿真分析[J]. 煤矿机械,2018,39(7):60-62.BAO Jianhua,WANG Yangyang,ZHANG Yue. Simulation analysis of working process for double drum-type shearer via discrete element method[J]. Coal Mine Machinery,2018,39(7):60-62. [19] LI Zhanfu,TONG Xin. A study of particles penetration in sieving process on a linear vibration screen[J]. International Journal of Coal Science & Technology,2015,2(4):299-305. [20] 王国强, 郝万军, 王继新. 离散单元法及其在EDEM上的实践[M]. 西安: 西北工业大学出版社, 2010.WANG Guoqiang, HAO Wanjun, WANG Jixin. Discrete element method and its practice on EDEM[M]. Xi'an: Northwestern Polytechnical University Press, 2010. [21] 张泽. 掘锚机在煤巷快速掘进中的应用[J]. 能源与节能,2022(4):209-211.ZHANG Ze. Application of alpine bolter miner in rapid tunneling of coal roadways[J]. Energy and Energy Conservation,2022(4):209-211. [22] 毛君,刘歆妍,陈洪月,等. 不同截齿安装角对采煤机截割性能的影响[J]. 煤炭科学技术,2017,45(10):144-149.MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Different installation angle of cutting picks affected to cutting performances of coal shearer[J]. Coal Science and Technology,2017,45(10):144-149. [23] 谢苗,闫江龙,毛君,等. 采煤机截割部振动特性分析[J]. 机械强度,2017,39(2):254-260.XIE Miao,YAN Jianglong,MAO Jun,et al. Analysis of vibration characteristics of shearer cutting unit[J]. Journal of Mechanical Strength,2017,39(2):254-260.