留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矸石层形态对掘锚机截割特性影响仿真分析

梁旭 郭佳毫 常毛毛 曲兴家 张黎

梁旭,郭佳毫,常毛毛,等. 矸石层形态对掘锚机截割特性影响仿真分析[J]. 工矿自动化,2023,49(3):93-99.  doi: 10.13272/j.issn.1671-251x.2022090062
引用本文: 梁旭,郭佳毫,常毛毛,等. 矸石层形态对掘锚机截割特性影响仿真分析[J]. 工矿自动化,2023,49(3):93-99.  doi: 10.13272/j.issn.1671-251x.2022090062
LIANG Xu, GUO Jiahao, CHANG Maomao, et al. Simulation analysis of the influence of gangue layer morphology on the cutting characteristics of the roadheader bolter[J]. Journal of Mine Automation,2023,49(3):93-99.  doi: 10.13272/j.issn.1671-251x.2022090062
Citation: LIANG Xu, GUO Jiahao, CHANG Maomao, et al. Simulation analysis of the influence of gangue layer morphology on the cutting characteristics of the roadheader bolter[J]. Journal of Mine Automation,2023,49(3):93-99.  doi: 10.13272/j.issn.1671-251x.2022090062

矸石层形态对掘锚机截割特性影响仿真分析

doi: 10.13272/j.issn.1671-251x.2022090062
基金项目: 国家重点研发计划项目(2022YFB4703605)。
详细信息
    作者简介:

    梁旭(1985—),男,陕西渭南人,高级工程师,硕士,现主要从事煤矿管理及生产工作,E-mail:liangxucumt@163.com

    通讯作者:

    郭佳毫(1996—),男,河北邢台人,助理工程师,现主要从事煤矿现场管理及生产工作,E-mail:2547427148@qq.com

  • 中图分类号: TD421

Simulation analysis of the influence of gangue layer morphology on the cutting characteristics of the roadheader bolter

  • 摘要: 巷道实际掘进过程中掘进工作面除全煤层外还有各种矸石层,矸石层的存在会影响掘锚机掘进效率。然而目前大多以全煤层工作面为研究背景对滚筒截割特性进行分析,或考虑的矸石层形态较为单一。针对上述问题,以MB670−1型掘锚机为研究对象,利用Pro/E软件绘制掘锚机三维模型,将模型导入RecurDyn软件并添加相应的运动副,之后再导入EDEM软件,建立EDEM−RecurDyn耦合仿真模型。从滚筒截割性能、滚筒位移和滚筒振动3个方面仿真分析了水平矸石层、斜矸石层、半矸石层3种矸石层形态对掘锚机截割特性的影响,结果表明:① 与全煤层相比,在矸石层条件下滚筒截割阻力、载荷波动系数、截割比能耗均有所增加,尤其在斜矸石层条件下增加最明显,截割阻力均值增大了35.61%,X轴(沿掘锚机掘进方向)、Y轴(垂直于巷道底板方向)、Z轴(与滚筒轴平行方向)载荷波动系数分别增大了26.79%,25.39%,61.28%,截割比能耗增大了37.21%。② 矸石层的存在使滚筒位移有所减小,相比于全煤层,在水平矸石层、斜矸石层、半矸石层条件下滚筒位移分别缩短了53,89,14 mm。③ 滚筒在截割含矸石层工作面时产生的振动幅度远大于截割全煤层工作面时。④ 矸石层形态对掘锚机截割特性的影响程度为斜矸石层>水平矸石层>半矸石层。

     

  • 图  1  颗粒模型

    Figure  1.  Particle model

    图  2  颗粒粘结模型

    Figure  2.  Particle bonding model

    图  3  含矸石层工作面模型

    Figure  3.  Working face model of gangue bearing layer

    图  4  掘锚机三维模型

    Figure  4.  3D model of roadheader bolter

    图  5  运动副

    Figure  5.  Motion pair

    图  6  EDEM−RecurDyn耦合仿真模型

    Figure  6.  EDEM-RecurDyn coupling simulation model

    图  7  不同形态矸石层下滚筒所受截割阻力曲线

    Figure  7.  Cutting resistance curves of drum under different gangue layers

    图  8  不同形态矸石层下滚筒位移曲线

    Figure  8.  Drum displacement curves under different gangue layers

    图  9  不同形态矸石层下滚筒加速度变化曲线

    Figure  9.  Drum acceleration variation curves under different gangue layers

    表  1  煤岩材料参数

    Table  1.   Material parameters of coal and rock

    材料密度/(kg·m−3泊松比剪切模量/Pa
    1 4200.321.9×108
    矸石2 3500.101.2×109
    下载: 导出CSV

    表  2  掘锚机材料参数

    Table  2.   Material parameters of roadheader bolter

    名称材料密度/(kg·m−3泊松比剪切模量/Pa
    截齿42CrMo7 8000.38.2×1010
    筒毂16Mn7 8000.38.4×1010
    其余部分合金钢7 8000.37.0×1010
    下载: 导出CSV

    表  3  接触参数

    Table  3.   Contact parameters

    颗粒−颗粒恢复因数静摩擦因数动摩擦因数
    煤−煤0.50.60.05
    煤−矸石0.50.70.08
    煤−滚筒0.50.40.05
    矸石−矸石0.60.80.10
    矸石−滚筒0.60.50.07
    下载: 导出CSV

    表  4  颗粒粘结参数

    Table  4.   Particle bonding parameters

    颗粒−颗粒单位面积法
    向刚度/(N·m−3
    单位面积切
    向刚度/(N·m−3
    法向应力/
    Pa
    切向应力/
    Pa
    煤−煤6.0×1081.8×1094.0×1046.0×105
    煤−矸石1.0×1092.4×1096.8×1048.0×106
    矸石−矸石2.8×1092.7×1091.9×1059.0×106
    下载: 导出CSV

    表  5  不同形态矸石层参数

    Table  5.   Parameters of different gangue layer

    矸石层形态箱体尺寸/m箱体体积/m³矸石颗粒数量/个
    水平矸石层5.501.50.32.47518 954
    斜矸石层5.501.50.319 026
    半矸石层2.751.50.619 105
    下载: 导出CSV

    表  6  不同形态矸石层下滚筒截割阻力均值

    Table  6.   Mean cutting resistance of drum under different gangue layers

    矸石层形态截割阻力均值/N截割阻力均值增长率/%
    全煤层6.74×104
    水平矸石层8.93×10432.49
    斜矸石层9.14×10435.61
    半矸石层8.48×10425.82
    下载: 导出CSV

    表  7  不同矸石层形态下滚筒载荷波动系数

    Table  7.   Drum load fluctuation coefficient under different gangue layers

    矸石层形态方向载荷均值/N载荷波动系数载荷波动系数增长率/%
    全煤层X−9.46×1040.56
    Y6.74×1040.63
    Z3.19×1034.52
    水平矸石层X−1.24×1040.583.57
    Y8.93×1040.687.94
    Z5.14×1035.4620.79
    斜矸石层X−1.49×1040.7126.79
    Y9.14×1040.7925.39
    Z3.56×1037.2961.28
    半矸石层X−1.17×1050.571.79
    Y8.48×1040.664.76
    Z7.58×1034.806.19
    下载: 导出CSV

    表  8  不同形态矸石层下滚筒截割比能耗

    Table  8.   Specific cutting energy consumption of drum under different gangue layers

    矸石层形态截割比能耗/(kW·h·m−3截割比能耗增长率/%
    全煤层3.01
    水平矸石层3.4514.62
    斜矸石层4.1337.21
    半矸石层3.154.65
    下载: 导出CSV
  • [1] 刘畅,姜鹏飞,王子越,等. 煤巷快速成巷技术现状及应用效果评价方法研究[J]. 煤炭科学技术,2020,48(11):26-33.

    LIU Chang,JIANG Pengfei,WANG Ziyue,et al. Research on current situation of rapid driving technology in coal roadway and its assessment method of application effect[J]. Coal Science and Technology,2020,48(11):26-33.
    [2] 李平. 煤矿巷道掘锚一体化快速掘进技术研究[J]. 能源与环保,2021,43(2):161-166.

    LI Ping. Research on integrated rapid excavation technology of tunnel driving and anchoring in coal mine[J]. China Energy and Environmental Protection,2021,43(2):161-166.
    [3] 王涛,石虎,刘雷. 掘锚机在煤巷快速掘进中的应用[J]. 中国新技术新产品,2022(12):87-89.

    WANG Tao,SHI Hu,LIU Lei. Application of anchor digger in fast driving of coal roadway[J]. New Technology & New Products of China,2022(12):87-89.
    [4] 刘敏. 浅谈采矿新技术的应用现状及其发展趋势——以MB670掘锚机为例[J]. 世界有色金属,2017(12):91,93.

    LIU Min. Application status and development trend of new mining technology-taking MB670 anchor & dig machine as an example[J]. World Nonferrous Metals,2017(12):91,93.
    [5] 苗圩巍,颜世铛,李纪强,等. 国内外掘锚机组的发展现状及发展趋势[J]. 机械设计,2020,37(增刊1):287-290.

    MIAO Weiwei,YAN Shidang,LI Jiqiang,et al. Development status and trend of excavation equipment with bolting unit at home and abroad[J]. Journal of Machine Design,2020,37(S1):287-290.
    [6] 姜建红. 掘锚机智能化综合控制技术的研究[J]. 机械管理开发,2021,36(4):232-233.

    JIANG Jianhong. Research on intelligent integrated control technology of anchor excavator[J]. Mechanical Management and Development,2021,36(4):232-233.
    [7] 张敬东. 矿井采煤机多工况下的机械性能分析[J]. 煤炭技术,2013,32(11):37-39.

    ZHANG Jingdong. Analysis of mechanical properties of coal machine under multiple working conditions[J]. Coal Technology,2013,32(11):37-39.
    [8] 刘伟. 复杂煤层条件下滚筒截割性能影响分析[J]. 机械管理开发,2022,37(8):99-100.

    LIU Wei. Analysis of the influence analysis of drum cut-off performance under complex coal seam conditions[J]. Mechanical Management and Development,2022,37(8):99-100.
    [9] 张强,张晓宇. 不同工况下采煤机滚筒截割性能研究[J]. 应用力学学报,2021,38(6):2360-2368.

    ZHANG Qiang,ZHANG Xiaoyu. Cutting performance of shearer drum under different working conditions[J]. Chinese Journal of Applied Mechanics,2021,38(6):2360-2368.
    [10] 张强,张晓宇. 采煤机滚筒截割性能数值模拟[J]. 辽宁工程技术大学学报(自然科学版),2021,40(4):367-377.

    ZHANG Qiang,ZHANG Xiaoyu. Numerical simulation of shearer drum cutting performance[J]. Journal of Liaoning Technical University(Natural Science Edition),2021,40(4):367-377.
    [11] 毛君,刘歆妍,陈洪月,等. 煤层倾角对滚筒工作性能影响的仿真研究[J]. 机械强度,2019,41(3):673-681.

    MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Simulation study on the effect of coal seam dip angle on drum work performance[J]. Journal of Mechanical Strength,2019,41(3):673-681.
    [12] 毛君,刘歆妍,陈洪月,等. 基于EDEM的采煤机滚筒工作性能的仿真研究[J]. 煤炭学报,2017,42(4):1069-1077.

    MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Simulation of shearer drum cutting performance based on EDEM[J]. Journal of China Coal Society,2017,42(4):1069-1077.
    [13] 万理想. 不同厚度含夹矸煤层的采煤机螺旋滚筒截割性能研究[J]. 煤矿机械,2022,43(6):39-44.

    WAN Lixiang. Study on cutting performance of shearer spiral drum in different thickness coal seam with gangue[J]. Coal Mine Machinery,2022,43(6):39-44.
    [14] 杨霞. 张家峁煤矿5−2煤综采面胶运顺槽锚杆支护技术研究[D]. 西安: 西安科技大学, 2017.

    YANG Xia. Technological research on bolting for belt conveying crossheading on fully mechanized coal face of 5−2 coal in Zhangjiamao Coal Mine[D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [15] SU O,AKCIN N A. Numerical simulation of rock cutting using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(3):434-442. doi: 10.1016/j.ijrmms.2010.08.012
    [16] 李磊. 离散元法在农业工程中的研究现状及展望[J]. 中国农机化学报,2015,36(5):345-348.

    LI Lei. Research progress and prospects of DEM in agricultural engineering application[J]. Journal of Chinese Agricultural Mechanization,2015,36(5):345-348.
    [17] 徐宝鑫. 截割头截齿安装参数的离散元仿真分析[D]. 沈阳: 沈阳理工大学, 2015.

    XU Baoxin. DEM simulation analysis of pick assembly parameters of cutting head[D]. Shenyang: Shenyang Ligong University, 2015.
    [18] 包建华,王阳阳,张悦. 基于离散元的双滚筒采煤机截割过程仿真分析[J]. 煤矿机械,2018,39(7):60-62.

    BAO Jianhua,WANG Yangyang,ZHANG Yue. Simulation analysis of working process for double drum-type shearer via discrete element method[J]. Coal Mine Machinery,2018,39(7):60-62.
    [19] LI Zhanfu,TONG Xin. A study of particles penetration in sieving process on a linear vibration screen[J]. International Journal of Coal Science & Technology,2015,2(4):299-305.
    [20] 王国强, 郝万军, 王继新. 离散单元法及其在EDEM上的实践[M]. 西安: 西北工业大学出版社, 2010.

    WANG Guoqiang, HAO Wanjun, WANG Jixin. Discrete element method and its practice on EDEM[M]. Xi'an: Northwestern Polytechnical University Press, 2010.
    [21] 张泽. 掘锚机在煤巷快速掘进中的应用[J]. 能源与节能,2022(4):209-211.

    ZHANG Ze. Application of alpine bolter miner in rapid tunneling of coal roadways[J]. Energy and Energy Conservation,2022(4):209-211.
    [22] 毛君,刘歆妍,陈洪月,等. 不同截齿安装角对采煤机截割性能的影响[J]. 煤炭科学技术,2017,45(10):144-149.

    MAO Jun,LIU Xinyan,CHEN Hongyue,et al. Different installation angle of cutting picks affected to cutting performances of coal shearer[J]. Coal Science and Technology,2017,45(10):144-149.
    [23] 谢苗,闫江龙,毛君,等. 采煤机截割部振动特性分析[J]. 机械强度,2017,39(2):254-260.

    XIE Miao,YAN Jianglong,MAO Jun,et al. Analysis of vibration characteristics of shearer cutting unit[J]. Journal of Mechanical Strength,2017,39(2):254-260.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  48
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2023-03-14
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回