Excitation device for mining steel wire rope based on magnetic flux leakage detection
-
摘要: 针对目前研究未考虑工程应用背景下钢丝绳摆动对励磁装置的影响,导致钢丝绳漏磁检测效果不理想的问题,设计了一套矿用钢丝绳励磁装置。通过建立钢丝绳仿真模型,仿真研究了不同气隙、提离值对钢丝绳漏磁场的影响,发现增大气隙或提离值均会降低钢丝绳漏磁场磁感应强度,影响钢丝绳漏磁检测结果。但实际应用中矿用钢丝绳摆动幅度大且易污染,因此钢丝绳励磁装置的气隙和提离值不宜过小。在考虑工程适用的条件下,设置气隙为6 mm、提离值为5 mm,进一步仿真分析永磁体厚度与长度、磁极间距、衔铁厚度对钢丝绳漏磁场的影响,发现永磁体厚度与长度对钢丝绳漏磁场影响最大,磁极间距对钢丝绳漏磁场影响较小,衔铁厚度对钢丝绳漏磁场的影响可忽略不计。基于仿真结果并考虑经济性和便携性,设置钢丝绳励磁装置参数:永磁体厚度为10 mm、永磁体长度为30 mm、磁极间距为180 mm、衔铁厚度为10 mm。动态仿真结果表明,钢丝绳漏磁场磁感应强度峰峰值达0.9 mT,说明该励磁装置能够保证损伤处产生较高的漏磁。实验结果表明,漏磁信号在钢丝绳不同断丝处均出现了明显波动,说明该励磁装置具有良好的励磁效果,可准确检测出钢丝绳断丝损伤。Abstract: The current research does not consider the influence of wire rope swing on the excitation device in the context of engineering applications, resulting in unsatisfactory detection results. In order to solve this problem, a set of mining wire rope excitation devices has been designed. Through the establishment of the wire rope simulation model, the influence of different air gap and lift off value on the magnetic leakage field of wire rope is simulated and studied. It is found that increasing the air gap or lift off value will reduce the magnetic induction intensity of the magnetic leakage field of the wire rope and affect the magnetic leakage detection results of the wire rope. However, in practical applications, the swing amplitude of mining wire ropes is large and the ropes are easy to be polluted. Therefore, the air gap and lift off value of the wire rope excitation device should not be too small. Under the conditions of considering engineering applicability, the air gap is set to 6 mm and the lift off value is set to 5 mm. Further simulation analysis is conducted on the effects of permanent magnet thickness and length, magnetic pole spacing, and armature thickness on the leakage magnetic field of steel wire ropes. It is found that the thickness and length of permanent magnets have the greatest influence on the leakage magnetic field of steel wire ropes. The magnetic pole spacing has a small influence on the leakage magnetic field of steel wire ropes. The influence of armature thickness on the leakage magnetic field of steel wire ropes can be ignored. Based on the simulation results and considering economy and portability, the parameters of the wire rope excitation device are set. The permanent magnet thickness is set to 10 mm, the permanent magnet length is set to 30 mm, the magnetic pole spacing is set to 180 mm, and the armature thickness is set to 10 mm. The dynamic simulation results show that the peak-to-peak value of the magnetic flux density of the wire rope magnetic leakage field reaches 0.9 mT. It indicates that the excitation device can ensure high magnetic leakage at the damage. The experimental results show that the magnetic flux leakage signal shows significant fluctuations at different broken wire locations of the steel wire rope. It indicates that the excitation device has a good excitation effect and can accurately detect broken wire damage of the steel wire rope.
-
表 1 气隙对钢丝绳漏磁场的影响
Table 1. Influence of air gap on magnetic flux leakage field of steel wire rope
气隙/mm 钢丝绳损伤漏磁峰值/mT 钢丝绳无损伤漏磁谷值/mT 0 3.947 0 19.214 6 3 3.418 2 17.827 0 6 2.849 4 17.135 2 9 2.806 3 15.941 1 12 2.804 6 14.912 0 表 2 提离值对钢丝绳漏磁场的影响
Table 2. Influence of lift off value on magnetic flux leakage field of steel wire rope
提离值/mm 钢丝绳损伤漏磁峰值/mT 钢丝绳无损伤漏磁谷值/mT 1 2.497 7 17.237 9 3 0.830 9 15.234 9 5 0.433 7 13.439 9 7 0.274 2 11.791 4 9 0.176 1 10.289 6 表 3 永磁体厚度对钢丝绳漏磁场的影响
Table 3. Influence of permanent magnet thickness on magnetic flux leakage field of steel wire rope
永磁体厚度/mm 钢丝绳损伤漏磁峰值
/mT钢丝绳无损伤漏磁谷值/mT 5 0.282 4 4.956 6 10 0.436 3 11.887 4 15 0.587 6 17.819 7 20 0.682 2 23.260 1 25 0.771 3 27.396 7 表 4 永磁体长度对钢丝绳漏磁场的影响
Table 4. Influence of permanent magnet length on magnetic flux leakage field of steel wire rope
永磁体长度/mm 钢丝绳损伤漏磁峰值/mT 钢丝绳无损伤漏磁谷值/mT 20 0.337 5 7.108 7 30 0.378 1 11.860 6 40 0.430 3 15.761 7 50 0.519 6 16.953 8 60 0.692 1 22.258 6 表 5 磁极间距对钢丝绳漏磁场的影响
Table 5. Influence of magnetic pole spacing on magnetic flux leakage field of steel wire rope
磁极间距/mm 钢丝绳损伤漏磁峰值/mT 钢丝绳无损伤漏磁谷值/mT 160 0.361 6 13.643 6 180 0.379 0 13.077 4 200 0.373 5 11.472 5 220 0.367 2 9.597 6 240 0.360 9 8.004 6 表 6 衔铁厚度对钢丝绳漏磁场的影响
Table 6. Influence of armature thickness on magnetic flux leakage field of steel wire rope
衔铁厚度/mm 钢丝绳损伤漏磁峰值/mT 钢丝绳无损伤漏磁谷值/mT 5 0.447 0 12.574 5 10 0.441 3 13.123 0 15 0.466 6 13.010 5 20 0.445 5 12.907 2 25 0.486 7 6.186 8 -
[1] 张义清. 钢丝绳断丝损伤检测与定量识别研究[D]. 青岛: 青岛理工大学, 2021.ZHANG Yiqing. Research on detection and quantitative identification of broken wires of the steel wire rope[D]. Qingdao: Qingdao University of Technology, 2021. [2] 朱良. 基于磁特性的钢丝绳断丝损伤定量检测研究[D]. 青岛: 青岛理工大学, 2019.ZHU Liang. Research on quantitative detection of broken wire damage of wire ropes based on magnetic characteristics[D]. Qingdao: Qingdao University of Technology, 2019. [3] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2022.State Administration of Work Safety. Coal mine safety regulations[M]. Beijing: China Coal Industry Publishing House, 2022. [4] 赵志科. 矿井提升钢丝绳的动态检测与故障诊断方法研究[D]. 徐州: 中国矿业大学, 2018.ZHAO Zhike. Study on dynamic detection and fault diagnosis approaches for mine hoisting wire rope[D]. Xuzhou: China University of Mining and Technology, 2018. [5] 朱伟杰,战卫侠,谭继文. 基于有限元法的矿用钢丝绳励磁检测装置研究[J]. 煤矿机械,2018,39(2):64-66.ZHU Weijie,ZHAN Weixia,TAN Jiwen. Research of mine wire rope magnetization detection device based on finite element method[J]. Coal Mine Machinery,2018,39(2):64-66. [6] 李晶. 矿用钢丝绳励磁结构模型及断丝定量识别研究[D]. 西安: 西安科技大学, 2021.LI Jing. Study on excitation structure model and quantitative identification of broken wires for mine wire rope[D]. Xi'an: Xi'an University of Science and Technology, 2021. [7] 窦连城. 钢丝绳内外层断丝损伤定量识别研究[D]. 青岛: 青岛理工大学, 2021.DOU Liancheng. Research on quantitative identification method of internal and external broken wires in steel wire rope[D]. Qingdao: Qingdao University of Technology, 2021. [8] 张义清,谭继文,朱良. 钢丝绳探伤永磁励磁装置的结构与通用性分析[J]. 煤炭工程,2019,51(9):182-186.ZHANG Yiqing,TAN Jiwen,ZHU Liang. Structure and universal property of permanent magnet excitation device for steel wire rope flaw detection[J]. Coal Engineering,2019,51(9):182-186. [9] 路正雄,郭卫,张传伟,等. 平行磁化NdFeB钢丝绳无损检测仪开发[J]. 西安科技大学学报,2021,41(1):139-144. doi: 10.13800/j.cnki.xakjdxxb.2021.0118LU Zhengxiong,GUO Wei,ZHANG Chuanwei,et al. Development of a new wire rope non-destructive tester using parallely magnetized NdFeB[J]. Journal of Xi'an University of Science and Technology,2021,41(1):139-144. doi: 10.13800/j.cnki.xakjdxxb.2021.0118 [10] 杨叔子, 康宜华, 陈厚桂, 等. 钢丝绳电磁无损检测 [M]. 北京: 机械工业出版社, 2017.YANG Shuzi, KANG Yihua, CHEN Hougui, et al. Electromagnetic nondestructive testing of wire rope[M]. Beijing: China Machine Press, 2017. [11] 谭继文, 战卫侠, 文妍. 钢丝绳安全检测原理与技术[M]. 北京: 科学出版社, 2009.TAN Jiwen, ZHAN Weixia, WEN Yan. Principle and technology of wire rope safety detection[M]. Beijing: Science Press, 2009. [12] 姚毅. 钢丝绳损伤检测与定量识别研究[D]. 济南: 济南大学, 2021.YAO Yi. Research on wire rope damage detection and quantitative recognition[D]. Jinan: University of Jinan, 2021. [13] LIU Shiwei,SUN Yanhua,JIANG Xiaoyuan,et al. A review of wire rope detection methods,sensors and signal processing techniques[J]. Journal of Nondestructive Evaluation,2020,39(4):1-18. [14] 田劼,赵彩跃. 基于3D Maxwell的钢丝绳漏磁检测仿真研究[J]. 煤炭工程,2020,52(7):152-156.TIAN Jie,ZHAO Caiyue. Simulation on magnetic leakage detection of steel wire rope based on 3D Maxwell[J]. Coal Engineering,2020,52(7):152-156. [15] 王以真. 实用磁路设计[M]. 2版. 北京: 国防工业出版社, 2008.WANG Yizhen. Practical magnetic circuit design[M]. 2nd ed. Beijing: National Defense Industry Press, 2008. [16] 窦连城,战卫侠,白晓瑞. 钢丝绳内外部断丝损伤识别[J]. 工矿自动化,2021,47(3):83-88.DOU Liancheng,ZHAN Weixia,BAI Xiaorui. Damage identification of broken wires inside and outside the wire rope[J]. Industry and Mine Automation,2021,47(3):83-88. [17] ZHOU Ping,ZHOU Gongbo,ZHU Zhencai,et al. A review of non-destructive damage detection methods for steel wire ropes[J]. Applied Sciences,2019,9(13):2771. DOI: 10.3390/app9132771. [18] LIU Shiwei,SUN Yanhua,JIANG Xiaoyuan,et al. Comparison and analysis of multiple signal processing methods in steel wire rope defect detection by hall sensor[J]. Measurement,2021,171:108768. DOI: 10.1016/j.measurement.2020.108768. [19] LIU Xiucheng,WANG Yujue,WU Bin,et al. Design of tunnel magnetoresistive-based circular MFL sensor array for the detection of flaws in steel wire rope[J]. Journal of Sensors,2016,2016:1-8. [20] ZHANG Donglai,ZHANG Enchao,PAN Shimin. A new signal processing method for the nondestructive testing of a steel wire rope using a small device[J]. NDT & E International,2020,114:102299. DOI: 10.1016/j.ndteint.2020.102299. [21] 田劼,孙钢钢,李睿峰,等. 基于正交试验的钢丝绳探伤仪结构参数优化[J]. 工矿自动化,2022,48(9):100-108.TIAN Jie,SUN Ganggang,LI Ruifeng,et al. Optimization of structural parameters of wire rope flaw detector based on orthogonal test[J]. Journal of Mine Automation,2022,48(9):100-108.