留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下矿山作业人员佩戴安全帽智能检测方法

杜青 杨仕教 郭钦鹏 张焕宝 王昱琛 尹裕

杜青,杨仕教,郭钦鹏,等. 地下矿山作业人员佩戴安全帽智能检测方法[J]. 工矿自动化,2023,49(7):134-140.  doi: 10.13272/j.issn.1671-251x.2022090033
引用本文: 杜青,杨仕教,郭钦鹏,等. 地下矿山作业人员佩戴安全帽智能检测方法[J]. 工矿自动化,2023,49(7):134-140.  doi: 10.13272/j.issn.1671-251x.2022090033
DU Qing, YANG Shijiao, GUO Qinpeng, et al. Intelligent detection method of working personnel wearing safety helmets in underground mine[J]. Journal of Mine Automation,2023,49(7):134-140.  doi: 10.13272/j.issn.1671-251x.2022090033
Citation: DU Qing, YANG Shijiao, GUO Qinpeng, et al. Intelligent detection method of working personnel wearing safety helmets in underground mine[J]. Journal of Mine Automation,2023,49(7):134-140.  doi: 10.13272/j.issn.1671-251x.2022090033

地下矿山作业人员佩戴安全帽智能检测方法

doi: 10.13272/j.issn.1671-251x.2022090033
基金项目: 湖南省研究生科研创新项目(CX20200916,QL20210216,QL20230233)。
详细信息
    作者简介:

    杜青(1999—),女,贵州普安人,博士研究生,研究方向为矿山智能检测,E-mail:19184747865@163.com

    通讯作者:

    杨仕教(1964—),男,湖南浏阳人,教授,博士,主要研究方向为矿业系统工程优化与工艺过程智能控制、图像机器识别,E-mail:649292197@qq.com

  • 中图分类号: TD67

Intelligent detection method of working personnel wearing safety helmets in underground mine

  • 摘要: 基于视觉图像方法是目前矿井人员佩戴安全帽智能检测的热点,但现有方法所用的地下矿山数据较少,安全帽特征分类不够精确。通过采集地下矿山采场、井巷等实际生产场景的图像,构建了矿山安全帽佩戴数据集——MHWD,并将安全帽佩戴情况进一步细分为正确佩戴、不规范佩戴和未佩戴3类。采用YOLOX算法进行人员佩戴安全帽检测,为了增强YOLOX提取全局特征的能力,引入注意力机制,即在YOLOX骨干网的空间金字塔池化瓶颈层嵌入有效通道注意力模块,在路径聚合特征金字塔网络每个上采样和下采样后添加卷积块注意力模块,由此构建了YOLOX−A模型。采用MHWD训练YOLOX−A模型并进行验证,结果表明,针对照度低、模糊、有人员遮挡的矿井图像,YOLOX−A模型能够准确识别人员佩戴安全帽情况,对不规范佩戴、正确佩戴和未佩戴安全帽3种分类结果的F1分数分别为0.86,0.92,0.89,平均精度分别为93.16%,95.76%,91.69%,平均精度均值为93.54%,整体F1分数较YOLOX模型提升4%,检测精度高于主流目标检测模型EfficientDet,YOLOv3,YOLOv4,YOLOv5,YOLOX。

     

  • 图  1  地下矿山作业人员佩戴安全帽图像分类

    Figure  1.  Image classification of working personnel wearing safety helmets in underground mine

    图  2  MHWD标签分类

    Figure  2.  Label classification of mine helmet wearing dataset(MHWD)

    图  3  YOLOX−A模型结构

    Figure  3.  YOLOX-A model structure

    图  4  改进前后的SPPB结构

    Figure  4.  SPPB structure before and after improvement

    图  5  融合CBAM的PAFPN

    Figure  5.  PAFPN integrating CBAM

    图  6  YOLOX模型与YOLOX−A模型训练结果的F1分数对比

    Figure  6.  F1 score comparison of training result between YOLOX model and YOLOX-A model

    图  7  YOLOX模型与YOLOX−A模型热力图可视化对比

    Figure  7.  Visualization comparison of thermal maps between YOLOX model and YOLOX-A model

    图  8  YOLOX−A模型对作业人员佩戴安全帽识别结果

    Figure  8.  Identification results of working personnel wearing safety helmets by using YOLOX-A model

    图  9  不同目标检测模型对作业人员佩戴安全帽的检测结果

    Figure  9.  Identification results of working personnel wearing safety helmets by using different target detection models

    表  1  不同目标检测模型在MHWD上的检测指标

    Table  1.   Detection indexes of different target detection models on MHWD %

    模型APmAP
    IrregularWearingWithHelmetPerson
    EfficientDet83.0890.8037.5370.47
    YOLOv374.8789.2179.1281.06
    YOLOv475.3689.2380.6381.74
    YOLOv577.390.5387.2285.02
    YOLOX91.6795.4892.2893.15
    YOLOX−A93.1695.7691.6993.54
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results

    YOLOXCBAMECAmAP/%
    93.15
    93.27
    93.54
    下载: 导出CSV
  • [1] 李超. 现代化矿山救护技术装备问题分析[J]. 中国金属通报,2021(11):116-117.

    LI Chao. Analysis of modern mine rescue technology and equipment[J]. China Metal Bulletin,2021(11):116-117.
    [2] 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究[J]. 煤矿安全,2022,53(5):99-105.

    CHEN Jie. Research on multi-system underground integration and emergency linkage technology for smart mine safety prevention and control[J]. Safety in Coal Mines,2022,53(5):99-105.
    [3] 张立艺,武文红,牛恒茂,等. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用,2022,58(16):1-17. doi: 10.3778/j.issn.1002-8331.2203-0580

    ZHANG Liyi,WU Wenhong,NIU Hengmao,et al. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications,2022,58(16):1-17. doi: 10.3778/j.issn.1002-8331.2203-0580
    [4] 孙国栋,李超,张航. 融合自注意力机制的安全帽佩戴检测方法[J]. 计算机工程与应用,2022,58(20):300-304. doi: 10.3778/j.issn.1002-8331.2103-0372

    SUN Guodong,LI Chao,ZHANG Hang. Safety helmet wearing detection method fused with self-attention mechanism[J]. Computer Engineering and Applications,2022,58(20):300-304. doi: 10.3778/j.issn.1002-8331.2103-0372
    [5] 李晓宇,陈伟,杨维,等. 基于超像素特征与SVM分类的人员安全帽分割方法[J]. 煤炭学报,2021,46(6):2009-2022.

    LI Xiaoyu,CHEN Wei,YANG Wei,et al. Segmentation method for personnel safety helmet based on super-pixel features and SVM classification[J]. Journal of China Coal Society,2021,46(6):2009-2022.
    [6] 毕林,谢伟,崔君. 基于卷积神经网络的矿工安全帽佩戴识别研究[J]. 黄金科学技术,2017,25(4):73-80. doi: 10.11872/j.issn.1005-2518.2017.04.073

    BI Lin,XIE Wei,CUI Jun. Identification research on the miner's safety helmet wear based on convolutional neural network[J]. Gold Science and Technology,2017,25(4):73-80. doi: 10.11872/j.issn.1005-2518.2017.04.073
    [7] 仝泽友,冯仕民,侯晓晴,等. 基于安全帽佩戴检测的矿山人员违规行为研究[J]. 电子科技,2019,32(9):26-31. doi: 10.16180/j.cnki.issn1007-7820.2019.09.006

    TONG Zeyou,FENG Shimin,HOU Xiaoqing,et al. Recognition of underground miners' rule-violated behavior based on safety helmet detection[J]. Electronic Science and Technology,2019,32(9):26-31. doi: 10.16180/j.cnki.issn1007-7820.2019.09.006
    [8] REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2022-09-03]. https://arxiv.org/abs/1804.02767.
    [9] BOCHKOVSKI A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2022-09-03]. https://arxiv.org/abs/2004.10934.
    [10] GE Zheng, LIU Songtao, WANG Feng, et al. Yolox: exceeding YOLO series in 2021[EB/OL]. [2022-09-03]. https://arxiv.org/abs/2107.08430.
    [11] JAMTSHO Y,RIYAMONGKOL P,WARANUSAST R. Real-time license plate detection for non-helmeted motorcyclist using YOLO[J]. ICT Express,2021,7(1):104-109. doi: 10.1016/j.icte.2020.07.008
    [12] SRIDHAR P, JAGADEESWARI M, SRI S H, et al. Helmet violation detection using YOLO v2 deep learning framework[C]. The 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, 2022: 1207-1212.
    [13] CHEN Meixi, KONG Rong, ZHU Jianming, et al. Application research of safety helmet detection based on low computing power platform using YOLO v5[C]. International Conference on Adaptive and Intelligent Systems, Suzhou, 2022: 107-117.
    [14] HE Zhiwei, WU Fan, GAO Mingyu, et al. Helmet detection based on improved YOLO v3 deep model[C]. IEEE 16th International Conference on Networking, Sensing and Control, Alberta, 2019: 363-368.
    [15] XIE Wenqin,XIE Lei,ZHANG Linzhi,et al. Toward efficient safety helmet detection based on Yolov5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-14.
    [16] SHIRMOHAMMADI S,FERRERO A. Camera as the instrument:the rising trend of vision based measurement[J]. IEEE Instrumentation & Measurement Magazine,2014,17(3):41-47.
    [17] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 390-391.
    [18] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 2117-2125.
    [19] HE Kaiming,ZHANG Xiayu,REN Shaoqing,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [20] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 11534-11542.
    [21] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision, Munich, 2018: 3-19.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  127
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2023-07-01
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回