留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆岩载荷扰动下平硐围岩变形分析及支护优化

柴敬 刘泓瑞 张丁丁 刘永亮 韩志成 田志诚 张锐新

柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020
引用本文: 柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020
CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020
Citation: CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.  doi: 10.13272/j.issn.1671-251x.2022090020

覆岩载荷扰动下平硐围岩变形分析及支护优化

doi: 10.13272/j.issn.1671-251x.2022090020
基金项目: 国家自然科学基金资助项目(41027002)。
详细信息
    作者简介:

    柴敬(1964—),男,宁夏平罗人,教授,主要从事采矿工程、岩石力学及光纤传感方面的研究工作,E-mail:chaij@xust.edu.cn

    通讯作者:

    刘泓瑞(1997—),男,四川广元人,硕士研究生,研究方向为采矿工程、光纤传感,E-mail:306731253@qq.com

  • 中图分类号: TD32

Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance

  • 摘要: 传统的收敛仪、三维激光扫描等矿山巷道围岩变形监测技术无法满足复杂工程全面监测需求,实时及自动化监测程度低,且不具备长距离、高精度和大面积监测能力,而现有光纤传感技术仅针对巷道围岩的单一参量进行监测,无法全面分析巷道围岩稳定状况。以某煤矿主平硐为工程背景,采用数值模拟研究了平硐上方填土前后的围岩稳定性,结果表明:填土工程导致平硐两帮围岩支承压力升高,且呈不对称分布;顶板最大下沉量由填土前的8.3 mm增至22.1 mm,最大底鼓量由4.0 mm增至8.5 mm,两帮移近量最大增幅为16.2 mm;围岩变形量与支承压力对应性较强,呈现随平硐上方填土厚度增大而增大的特征。采用光纤布拉格光栅(FBG)传感器构建了平硐围岩变形监测系统,在平硐断面设置FBG传感器监测平硐拱顶裂缝张开度、顶底板及两帮变形量、断面应力应变等,通过实时光谱图分析围岩局部变形情况,结果表明平硐在现有料石砌碹支护状态下,受上覆载荷扰动影响,顶板受压明显,顶板最大下沉量约为30 mm,形成约2 mm宽的裂缝,且监测结果与数值模拟、现场观测结果相符,验证了基于FBG的平硐围岩稳定性监测方法的有效性。根据监测结果,针对平硐支护薄弱处提出了锚杆+T型钢板的补强支护方案,通过数值模拟对其支护效果进行验证,结果表明优化支护方案后,在覆岩载荷扰动下平硐顶板最大下沉量为11.3 mm,两帮最大移近量为12.04 mm,围岩变形量平均降幅达48.8%,提高了围岩稳定性。

     

  • 图  1  主平硐轴线剖面及平面

    Figure  1.  Axis profile and plan of main adit

    图  2  填土工程断面

    Figure  2.  Cross-section of filling engineering

    图  3  平硐围岩稳定性数值计算模型

    Figure  3.  Numerical calculation model of adit surrounding rock stability

    图  4  平硐围岩支承压力分布

    Figure  4.  Abutment pressure distribution of adit surrounding rock

    图  5  现支护条件下平硐围岩变形量

    Figure  5.  Deformation value of adit surrounding rock under existing supporting condition

    图  6  基于FBG的平硐围岩变形监测系统

    Figure  6.  Monitoring system of adit surrounding rock deformation based on fiber Bragg grating(FBG)

    图  7  1号断面FBG位移计监测精度分析

    Figure  7.  Monitoring precision analysis of FBG displacement meter in No.1 section

    图  8  FBG表面应变计监测值

    Figure  8.  Monitoring value of FBG surface strain gauge

    图  9  FBG位移计监测值

    Figure  9.  Monitoring value of FBG displacement meters

    图  10  平硐裂缝

    Figure  10.  Adit cracks

    图  11  FBG土压力计监测值

    Figure  11.  Monitoring value of FBG soil pressure meters

    图  12  FBG移近量传感器监测值

    Figure  12.  Monitoring value of FBG proximity sensors

    图  13  平硐支护优化方案

    Figure  13.  Optimized adit support scheme

    图  14  平硐围岩稳定性数值模拟结果

    Figure  14.  Numerical simulation results of adit surrounding rock stability

    图  15  平硐围岩变形量

    Figure  15.  Deformation value of adit surrounding rock

    表  1  平硐围岩稳定性监测量

    Table  1.   Monitoring parameters of adit surrounding rock stability

    监测量传感器类型监测内容
    断面应力、应变FBG表面应变计巷道表面应变
    拱顶裂缝张开度FBG位移计拱顶裂缝张开度
    支护结构内部应力FBG土压力计平硐支护结构受力及变形情况
    顶底板及两帮变形量FBG移近量传感器顶底板及两帮位移变化
    下载: 导出CSV

    表  2  FBG传感器布置位置

    Table  2.   Arranging locations of FBG sensors

    传感器类型传感器位置
    FBG表面应变计平硐顶底板、两帮和肩部
    FBG位移计平硐拱顶中央
    FBG土压力计平硐两帮拱脚
    FBG移近量传感器平硐顶底板和两帮
    下载: 导出CSV

    表  3  各断面FBG位移计监测精度范围

    Table  3.   Monitoring precision range of FBG displacement meter in each section

    断面编号传感器位置零点值/mm波动范围/mm标定值/mm
    1靠近平硐口−0.145 7−0.241 8~0.142 6±1
    靠近大巷−0.009 8−0.410 7~0.377 7
    2靠近平硐口−0.056 5−0.193 8~0.306 8
    3靠近平硐口−0.134 8−0.209 1~0.183 9
    4靠近平硐口−0.085 7−0.104 9~0.133 4
    靠近大巷0.005 3−0.150 5~0.236 8
    下载: 导出CSV

    表  4  FBG传感器重复测试精度

    Table  4.   Repetitive test precision of FBG sensors

    传感器类型理论精度重复测试精度
    FBG表面应变计±4 μɛ±50 μɛ
    FBG位移计±1 mm±1 mm
    FBG土压力计±0.01 MPa±0.2 MPa
    FBG移近量传感器±2 mm±12 mm
    下载: 导出CSV
  • [1] 张桂生,毛江鸿,何勇,等. 基于BOTDA的隧道变形监测技术研究[J]. 公路交通科技(应用技术版),2009,5(8):190-192.

    ZHANG Guisheng,MAO Jianghong,HE Yong,et al. Research on tunnel deformation monitoring technology based on BOTDA[J]. Highway Traffic Technology(Applied Technology Edition ),2009,5(8):190-192.
    [2] 柴敬,张丁丁,李毅. 光纤传感技术在岩土与地质工程中的应用研究进展[J]. 建筑科学与工程学报,2015,32(3):28-37. doi: 10.3969/j.issn.1673-2049.2015.03.005

    CHAI Jing,ZHANG Dingding,LI Yi. Research progress of optical fiber sensing technology in geotechnical and geological engineering[J]. Journal of Architecture and Civil Engineering,2015,32(3):28-37. doi: 10.3969/j.issn.1673-2049.2015.03.005
    [3] 程刚,王振雪,朱鸿鹄,等. 基于分布式光纤感测的岩土体变形监测研究综述[J]. 激光与光电子学进展,2022,59(19):51-70.

    CHENG Gang,WANG Zhenxue,ZHU Honghu,et al. Research review of rock and soil deformation monitoring based on distributed fiber optic sensing[J]. Laser & Optoelectronics Progress,2022,59(19):51-70.
    [4] 柴敬,刘永亮,袁强,等. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术,2021,49(1):208-217.

    CHAI Jing,LIU Yongliang,YUAN Qiang,et al. Theory-technology and application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology,2021,49(1):208-217.
    [5] 柴敬,杜文刚,袁强,等. 物理模型试验光纤传感技术测试方法分析[J]. 西安科技大学学报,2018,38(5):728-736.

    CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test based on optical fiber sensing technology detection[J]. Journal of Xi'an University of Science and Technology,2018,38(5):728-736.
    [6] 李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.

    LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11. 2402.td.20220826.1716.006.html.
    [7] 兰建功,张红俊. 基于光纤光栅传感器的巷道矿压监测方法研究[J]. 煤炭技术,2022,41(2):121-124.

    LAN Jiangong,ZHANG Hongjun. Research on roadway ground pressure monitoring method based on grating fiber sensor[J]. Coal Technology,2022,41(2):121-124.
    [8] 汤树成,张杰,张恒,等. 光纤光栅传感技术在煤矿安全监测系统中的应用[J]. 工矿自动化,2014,40(7):41-44.

    TANG Shucheng,ZHANG Jie,ZHANG Heng,et al. Application of fiber gratting sensing technology in mine safety monitoring system[J]. Industry and Mine Automation,2014,40(7):41-44.
    [9] 李锦辉, 张俊齐, 魏强, 等. 基于自感知FRP锚杆的隧道围岩变形监测与松动圈识别[J/OL]. 西南交通大学学报: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520. 1839.010.html.

    LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Tunnel surrounding rock deformation monitoring and loose zone identification based on self-sensing FRP anchor[J/OL]. Journal of Southwest Jiaotong University: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520.1839.010.html.
    [10] 张宁博,王建达,秦凯,等. 基于一孔多点式应力与位移监测系统的掘进巷道冲击危险性评价[J]. 煤炭学报,2020,45(增刊1):140-149. doi: 10.13225/j.cnki.jccs.2019.0952

    ZHANG Ningbo,WANG Jianda,QIN Kai,et al. Evaluation of coal bump risk in excavation roadway based on multi-point stress and displacement monitoring system[J]. Journal of China Coal Society,2020,45(S1):140-149. doi: 10.13225/j.cnki.jccs.2019.0952
    [11] 刘德军,张强勇,陈旭光,等. 深部巷道围岩破裂模型试验变形量测研究[J]. 四川大学学报(工程科学版),2010,42(4):71-77.

    LIU Dejun,ZHANG Qiangyong,CHEN Xuguang,et al. Study on deformation measurement in surrounding rock failure model test of deep roadway[J]. Journal of Sichuan University(Engineering Science Edition),2010,42(4):71-77.
    [12] 侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6.

    HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.
    [13] 朱少华,岳音,韩洪波,等. 光纤传感技术在相似材料模型试验中的应用[J]. 传感技术学报,2020,33(4):621-628. doi: 10.3969/j.issn.1004-1699.2020.04.022

    ZHU Shaohua,YUE Yin,HAN Hongbo,et al. Application of optical fiber sensing technology in similar materials model test[J]. Chinese Journal of Sensors and Actuators,2020,33(4):621-628. doi: 10.3969/j.issn.1004-1699.2020.04.022
    [14] 刘少林,张丹,张平松,等. 基于分布式光纤传感技术的采动覆岩变形监测[J]. 工程地质学报,2016,24(6):1118-1125.

    LIU Shaolin,ZHANG Dan,ZHANG Pingsong,et al. Deformation monitoring of overburden based on distributed optical fiber sensing[J]. Journal of Engineering Geology,2016,24(6):1118-1125.
    [15] 李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20. doi: 10.13272/j.issn.1671-251x.2015.11.005

    LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20. doi: 10.13272/j.issn.1671-251x.2015.11.005
    [16] 孙健. 光纤光栅位移传感器在边坡监测中的应用研究[J]. 工矿自动化,2014,40(2):95-98. doi: 10.13272/j.issn.1671-251x.2014.02.025

    SUN Jian. Application research of fiber grating displacement sensor in slope monitoring[J]. Industry and Mine Automation,2014,40(2):95-98. doi: 10.13272/j.issn.1671-251x.2014.02.025
    [17] 苏胜昔,杨昌民,范喜安. 光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J]. 工程力学,2014,31(增刊1):134-138,144.

    SU Shengxi,YANG Changmin,FAN Xi'an. Application of fiber Bragg grating sensor technology in highway tunnel surrounding rock deformation and real-time monitoring[J]. Engineering Mechanics,2014,31(S1):134-138,144.
    [18] 何勇,姜帅,毛江鸿,等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程,2012,34(1):1-6.

    HE Yong,JIANG Shuai,MAO Jianghong,et al. Cracking monitoring method and experiment with distributed fiber sensor[J]. Journal of Civil,Architectural & Environmental Engineering,2012,34(1):1-6.
    [19] 董鹏,夏开文,于长一,等. 浅埋隧道覆岩变形沉降的分布式光纤监测与分析[J]. 防灾减灾工程学报,2019,39(5):724-732. doi: 10.13409/j.cnki.jdpme.2019.05.005

    DONG Peng,XIA Kaiwen,YU Changyi,et al. Monitoring and analysis of stratum deformation and subsidence overlying a shallow tunnel using distributed optical fiber sensing technology[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(5):724-732. doi: 10.13409/j.cnki.jdpme.2019.05.005
    [20] 刘泉声,王俊涛,肖龙鸽,等. OFDR光纤传感技术在十字岩柱暗挖法物理模型试验中的应用[J]. 岩石力学与工程学报,2017,36(5):1063-1075. doi: 10.13722/j.cnki.jrme.2016.0956

    LIU Quansheng,WANG Juntao,XIAO Longge,et al. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1063-1075. doi: 10.13722/j.cnki.jrme.2016.0956
    [21] 张宇,史波,汤国强. 光纤光栅传感技术在洞室围岩变形监测中的应用[J]. 人民长江,2019,50(8):126-130. doi: 10.16232/j.cnki.1001-4179.2019.08.022

    ZHANG Yu,SHI Bo,TANG Guoqiang. Application of fiber grating sensing technology in deformation monitoring of cavern surrounding rock[J]. Yangtze River,2019,50(8):126-130. doi: 10.16232/j.cnki.1001-4179.2019.08.022
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  76
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2023-03-10
  • 网络出版日期:  2022-10-17

目录

    /

    返回文章
    返回