Study on permeability characteristics of caved coal and rock in goaf
-
摘要: 地震法常用于分析采空区垮落煤岩孔隙率和渗透率的相关性,现有研究大多采用有效介质理论,将采空区垮落煤岩的各向异性和不均匀性转换为等效的介质参数,对粒径、孔隙率、空间特征等因素对地震波的影响考虑较少。以采空区垮落煤岩为研究对象,根据实际采空区垮落煤岩颗粒级配和孔隙率,制备了破碎煤岩样品,通过实验验证了其孔隙率和波长−粒径比与实际采空区垮落煤岩一致。在此基础上,通过实验分析了煤岩粒径、孔隙率、地震波频率等因素对波速、振幅衰减系数及渗透率的影响,结果表明:破碎煤岩中P波速度随孔隙率增大而减小,随粒径增大而增大,受地震波频率影响较小;振幅衰减系数随孔隙率增大而增大,随粒径增大而减小,孔隙率较大时更易受地震波频率影响;破碎煤岩的渗透率随孔隙率和粒径增大而增大,遵循Kozney-Carman方程,基于实验结果建立了采空区垮落煤岩渗透率预测公式,计算得现场采空区垮落煤岩渗透率为1 225×10−12~178 930×10−12 m2;为消除粒径对地震波振幅衰减系数和煤岩样品渗透率的影响,提出单位波长振幅衰减系数(振幅衰减因子),并通过最小二乘法拟合得到振幅衰减因子与渗透率之间的经验关系式,为初步判断采空区垮落煤岩的渗透率提供了思路。Abstract: The seismic method is often used to analyze the correlation between porosity and permeability of caved coal and rock in goaf. Most of the existing studies adopt the effective medium theory, which convert the anisotropy and inhomogeneity of caved coal and rock in goaf into equivalent medium parameters. The influence of particle size, porosity, spatial characteristics and other factors on the seismic wave is less considered. Taking the caved coal and rock in goaf as the research object, the broken coal and rock samples are prepared according to the actual particle gradation and porosity of the caved coal and rock in goaf. The porosity and wavelength-particle size ratio of the caved coal and rock samples are verified to be consistent with those of the caved coal and rock in the actual goaf. On this basis, the influence of coal and rock particle size, porosity and seismic wave frequency on wave velocity, amplitude attenuation coefficient and permeability is analyzed through experiments.The P-wave velocity in broken coal and rock decreases with the increase of porosity, increases with the increase of particle size, and is less affected by seismic wave frequency. The amplitude attenuation coefficient increases with porosity and decreases with the increase of particle size, and is more easily affected by seismic wave frequency when porosity is larger. The permeability of broken coal and rock increases with the increase of porosity and particle size. According to the Kozney-Carman equation, the permeability prediction formula of coal and rock in goaf is established based on the experimental results. The calculated permeability of caved coal and rock in goaf is 1 225× 10−12-178 930×10−12 m2. In order to eliminate the influence of particle size on the amplitude attenuation coefficient of seismic wave and the permeability of coal and rock samples, the amplitude attenuation coefficient of unit wavelength (amplitude attenuation factor) is proposed. The empirical relationship between the amplitude attenuation factor and the permeability is obtained by least square fitting. The study provides a thought for preliminarily judging the permeability of caved coal and rock in goaf.
-
表 1 煤样组分分析结果
Table 1. Composition analysis results of coal samples
% 煤样 水分 固定碳 灰分 挥发分 硫 褐煤 8.2 33.7 19.3 36.8 2.0 烟煤 4.5 54.7 17.4 20.6 2.8 表 2 砂岩样品化学成分分析结果
Table 2. Chemical composition analysis results of sandstone sample
% SiO2 AlO3 Fe2O3 FeO MgO 93.13 3.86 0.11 0.54 0.25 表 3 煤岩样品力学参数
Table 3. Mechanical parameters of coal and rock samples
样品 弹性模
量/GPa体积模
量/GPa泊松
比剪切模
量/GPa密度/
(kg·m−3)P 波速度/
(m·s−1)S 波速度/
(m·s−1)砂岩 8.10 6.55 0.22 4.70 2 551 2 350 1157 烟煤 1.70 1.67 0.33 0.63 1 845 2 150 638 褐煤 1.53 1.20 0.34 0.56 1 690 2 102 629 -
[1] Review of world energy 2021[EB/OL]. [2022-08-12]. https://www.bp.com.cn/zh_cn/china/home/news/reports/statistical-review-2021.html. [2] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331-2345. [3] 袁亮,郭华,李平,等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报,2013,38(1):1-8. doi: 10.13225/j.cnki.jccs.2013.01.015YUAN Liang,GUO Hua,LI Ping,et al. Theory and technology of goaf gas drainage with large-diameter surface boreholes[J]. Journal of China Coal Society,2013,38(1):1-8. doi: 10.13225/j.cnki.jccs.2013.01.015 [4] 徐宇,李孜军,翟小伟,等. 开采过程中采空区煤自燃与瓦斯复合致灾隐患区域研究[J]. 煤炭学报,2019,44(增刊2):585-592. doi: 10.13225/j.cnki.jccs.2019.0596XU Yu,LI Zijun,ZHAI Xiaowei,et al. Potential coupled harzard zone of coal spontaneous combustion and gas in goaf under mining condition[J]. Journal of China Coal Society,2019,44(S2):585-592. doi: 10.13225/j.cnki.jccs.2019.0596 [5] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384-392. doi: 10.13225/j.cnki.jccs.2019.1634LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(S1):384-392. doi: 10.13225/j.cnki.jccs.2019.1634 [6] 黄平路,陈从新,肖国峰,等. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. 岩土力学,2009,30(10):3020-3024. doi: 10.3969/j.issn.1000-7598.2009.10.023HUANG Pinglu,CHEN Congxin,XIAO Guofeng,et al. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. Rock and Soil Mechanics,2009,30(10):3020-3024. doi: 10.3969/j.issn.1000-7598.2009.10.023 [7] 王玉涛. 采空区多孔介质空隙率与渗透特性三维空间动态分布模型[J]. 中国安全生产科学技术,2020,16(10):40-46.WANG Yutao. Three-dimensional spatial dynamic distribution model on porosity and permeability characteristics of porous media in goaf[J]. Journal of Safety Science and Technology,2020,16(10):40-46. [8] 梁运涛,张腾飞,王树刚,等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报,2009,34(9):1203-1207. doi: 10.3321/j.issn:0253-9993.2009.09.011LIANG Yuntao,ZHANG Tengfei,WANG Shugang,et al. Heterogeneous model of porosity in gobs and its airflow field distribution[J]. Journal of China Coal Society,2009,34(9):1203-1207. doi: 10.3321/j.issn:0253-9993.2009.09.011 [9] 褚廷湘,姜德义,余明高. 承压颗粒煤逐级加载下渗透特性实验研究[J]. 中国矿业大学学报,2017,46(5):1058-1065.CHU Tingxiang,JIANG Deyi,YU Minggao. Experimental study of the seepage properties of the compacted particle coal under gradual loading[J]. Journal of China University of Mining & Technology,2017,46(5):1058-1065. [10] KARACAN C Ö,ESTERHUIZEN G S,SCHATZEL S J,et al. Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production[J]. International Journal of Coal Geology,2007,71(2/3):225-245. doi: 10.1016/j.coal.2006.08.003 [11] 王伟,高星,李松营,等. 槽波层析成像方法在煤田勘探中的应用——以河南义马矿区为例[J]. 地球物理学报,2012,55(3):1054-1062. doi: 10.6038/j.issn.0001-5733.2012.03.036WANG Wei,GAO Xing,LI Songying,et al. Channel wave tomography method and its application in coal mine exploration:An example from Henan Yima Mining Area[J]. Chinese Journal of Geophysics,2012,55(3):1054-1062. doi: 10.6038/j.issn.0001-5733.2012.03.036 [12] HANSON D R,VANDERGRIFT T L,DEMARCO M J,et al. Advanced techniques in site characterization and mining hazard detection for the underground coal industry[J]. International Journal of Coal Geology,2002(50):275-301. [13] 薛国强,潘冬明,于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展,2018,33(5):2187-2192. doi: 10.6038/pg2018BB0294XUE Guoqiang,PAN Dongming,YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics,2018,33(5):2187-2192. doi: 10.6038/pg2018BB0294 [14] 蒋法文,黄晖,张振生,等. 高精度三维地震勘探技术在煤田安全生产中的应用[J]. 中国煤炭地质,2014,26(2):60-64. doi: 10.3969/j.issn.1674-1803.2014.02.13JIANG Fawen,HUANG Hui,ZHANG Zhensheng,et al. Application of high precision 3D seismic prospecting technology in coalfield safety production[J]. Coal Geology of China,2014,26(2):60-64. doi: 10.3969/j.issn.1674-1803.2014.02.13 [15] 李亚林,贺振华,黄德济,等. 岩石孔渗特性与地震波衰减、传播速度的相互关系[J]. 天然气工业,2001,21(4):7-12. doi: 10.3321/j.issn:1000-0976.2001.04.002LI Yalin,HE Zhenhua,HUANG Deji,et al. Relation between rock porosity-permeability property and seismic wave attenuation and propagation velocity[J]. Natural Gas Industry,2001,21(4):7-12. doi: 10.3321/j.issn:1000-0976.2001.04.002 [16] 张春,题正义,李宗翔. 采空区孔隙率的空间立体分析研究[J]. 长江科学院院报,2012,29(6):52-57. doi: 10.3969/j.issn.1001-5485.2012.06.012ZHANG Chun,TI Zhengyi,LI Zongxiang. Porosity of goaf in three dimensions[J]. Journal of Yangtze River Scientific Research Institute,2012,29(6):52-57. doi: 10.3969/j.issn.1001-5485.2012.06.012 [17] FUMAGALLI E. Tests on cohesionless materials for rockfill dams[J]. ASCE Soil Mechanics and Foundation Division Journal,1969,95(1):313-330. doi: 10.1061/JSFEAQ.0001223 [18] PAPPAS D M, MARK C. Behavior of simulated longwall gob material[R]. Washington: United States Department of the Interior, 1993. [19] WANG Gang,XU Hao,WU Mengmeng,et al. Porosity model and air leakage flow field simulation of goaf based on DEM-CFD[J]. Arabian Journal of Geosciences,2018,11(7):1-17. [20] KARACAN C Ö. Prediction of porosity and permeability of caved zone in longwall gobs[J]. Transport in Porous Media,2010,82(2):413-439. doi: 10.1007/s11242-009-9437-7 [21] SZLAZAK J. The determination of a co-efficient of longwall gob permeability[J]. Archives of Mining Sciences,2001,46(4):451-468.