留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于含噪Retinex模型的煤矿低光照图像增强方法

李正龙 王宏伟 曹文艳 张夫净 王宇衡

李正龙,王宏伟,曹文艳,等. 基于含噪Retinex模型的煤矿低光照图像增强方法[J]. 工矿自动化,2023,49(4):70-77.  doi: 10.13272/j.issn.1671-251x.2022080047
引用本文: 李正龙,王宏伟,曹文艳,等. 基于含噪Retinex模型的煤矿低光照图像增强方法[J]. 工矿自动化,2023,49(4):70-77.  doi: 10.13272/j.issn.1671-251x.2022080047
LI Zhenglong, WANG Hongwei, CAO Wenyan, et al. A method for enhancing low light images in coal mines based on Retinex model containing noise[J]. Journal of Mine Automation,2023,49(4):70-77.  doi: 10.13272/j.issn.1671-251x.2022080047
Citation: LI Zhenglong, WANG Hongwei, CAO Wenyan, et al. A method for enhancing low light images in coal mines based on Retinex model containing noise[J]. Journal of Mine Automation,2023,49(4):70-77.  doi: 10.13272/j.issn.1671-251x.2022080047

基于含噪Retinex模型的煤矿低光照图像增强方法

doi: 10.13272/j.issn.1671-251x.2022080047
基金项目: 国家重点研发计划项目(2020YFB1314004);山西省揭榜招标项目(20201101008);山西省重点研发计划项目(202102100401015)。
详细信息
    作者简介:

    李正龙(1998—),男,山东潍坊人,硕士研究生,研究方向为机器视觉、视觉SLAM、掘进机定位导航,E-mail:lizhenglong2293@outlook.com

    通讯作者:

    王宏伟 (1977—),女,黑龙江勃利人,教授,博士,博士研究生导师,主要研究方向为煤机装备智能化、人工智能与5G+智慧矿山等,E-mail:lntuwhw@126.com

  • 中图分类号: TD67

A method for enhancing low light images in coal mines based on Retinex model containing noise

  • 摘要: 低光照图像会导致许多计算机 视觉任务达不到预期效果,影响后续图像分析与智能决策。针对现有煤矿井下低光照图像增强方法未考虑图像现实噪声的问题,提出一种基于含噪Retinex模型的煤矿低光照图像增强方法。建立了含噪Retienx模型,利用噪声估计模块(NEM)估计现实噪声,将原图像和估计噪声作为光照分量估计模块(IEM)和反射分量估计模块(REM)的输入,生成光照分量与反射分量并对二者进行耦合,同时对光照分量进行伽马校正等调整,对耦合后的图像及调整后的光照分量进行除法运算,得到最终的增强图像。NEM通过3层CNN对含噪图像进行拜耳采样,然后重构生成与原图像大小一致的三通道特征图。IEM与REM均以ResNet−34作为图像特征提取网络,引入多尺度非对称卷积与注意力模块(MACAM),以增强网络的细节过滤能力及重要特征筛选能力。定性和定量评估结果表明,该方法能够平衡光源与黑暗环境之间的关系,降低现实噪声的影响,在图像自然度、真实度、对比度、结构等方面均具有良好性能,图像增强效果优于Retinex−Net,Zero−DCE,DRBN,DSLR,TBEFN,RUAS等模型。通过消融实验验证了NEM与MACAM的有效性。

     

  • 图  1  Retinex理论

    Figure  1.  Retinex theory

    图  2  Retinex解耦策略

    Figure  2.  Retinex decoupling strategy

    图  3  含噪Retienx模型

    Figure  3.  Retienx model with noise

    图  4  拜耳采样

    Figure  4.  Bayer downsampling

    图  5  NEM结构

    Figure  5.  Structure of noise estimation module

    图  6  煤矿不同场景下6种模型与本文方法的对比

    Figure  6.  Comparison between six models and the method presented in this paper

    图  7  多光源、逆光条件下巷道图像增强效果对比

    Figure  7.  Comparison of image enhancement effects in roadway under multiple light sources and backlight conditions

    表  1  不同模型客观评价结果

    Table  1.   Objective evaluation results of different models

    图像集模型NIQENIQMCPSNRSSIM
    矿井图像Retinex−Net3.374.8814.400.59
    Zero−DCE3.624.6715.510.58
    DRBN3.544.9815.320.70
    DSLR3.685.2613.930.49
    TBEFN3.575.4417.140.76
    RUAS3.435.1818.320.72
    本文3.305.6318.50.74
    矿井设备图像Retinex−Net3.424.6413.090.57
    Zero−DCE3.694.8314.580.55
    DRBN3.505.0315.660.66
    DSLR3.665.6415.380.78
    TBEFN3.605.4017.420.42
    RUAS3.525.2918.550.70
    本文3.285.7818.030.77
    巷道图像Retinex−Net3.534.6613.880.56
    Zero−DCE3.764.8313.560.54
    DRBN3.534.9515.320.68
    DSLR3.605.1814.950.73
    TBEFN3.425.2617.830.69
    RUAS3.595.5518.660.71
    本文3.335.8318.920.80
    多光源场景图像Retinex−Net3.404.0313.580.52
    Zero−DCE3.544.6213.040.59
    DRBN3.605.3315.420.61
    DSLR3.335.1913.110.40
    TBEFN3.454.8617.640.64
    RUAS3.585.0518.220.72
    本文3.255.8619.010.77
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Results of ablation experiment

    模型NIQENIQMCPSNRSSIM
    ResNet3.354.4314.020.51
    ResNet +NEM3.304.9616.710.57
    ResNet +MACAM3.265.2717.830.62
    ResNet +NEM +MACAM3.225.6218.820.70
    下载: 导出CSV
  • [1] 赵谦. 煤矿井下动态目标视频监测图像处理研究[D]. 西安: 西安科技大学, 2014.

    ZHAO Qian. Study on video monitoring and image processing of coal mine dynamic targets[D]. Xi'an: Xi'an University of Science and Technology, 2014.
    [2] 孙继平. 煤矿安全生产监控与通信技术[J]. 煤炭学报,2010,35(11):1925-1929.

    SUN Jiping. Technologies of monitoring and communication in the coal mine[J]. Journal of China Coal Society,2010,35(11):1925-1929.
    [3] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5.

    SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5.
    [4] 孙继平,杜东璧. 基于随机特征的矿井视频图像中的人员跟踪技术[J]. 煤炭科学技术,2015,43(11):91-94.

    SUN Jiping,DU Dongbi. Tracing technology of personnel in mine video images based on random features[J]. Coal Science and Technology,2015,43(11):91-94.
    [5] 张谢华,张申,方帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J]. 煤炭学报,2014,39(1):198-204. doi: 10.13225/j.cnki.jccs.2013.0150

    ZHANG Xiehua,ZHANG Shen,FANG Shuai,et al. Clearing research on fog and dust images in coal mine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198-204. doi: 10.13225/j.cnki.jccs.2013.0150
    [6] 王殿伟,韩鹏飞,范九伦,等. 基于光照−反射成像模型和形态学操作的多谱段图像增强算法[J]. 物理学报,2018,67(21):104-114.

    WANG Dianwei,HAN Pengfei,FAN Jiulun,et al. Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation[J]. Acta Physica Sinica,2018,67(21):104-114.
    [7] 何畏. 基于改进直方图的低照度图像增强算法[J]. 计算机科学,2015,42(增刊1):241-242,262.

    HE Wei. Low-light image enhancement based on improve histogram[J]. Computer Science,2015,42(S1):241-242,262.
    [8] ZUO Chao,CHEN Qian,SUI Xiubao. Range limited bi-histogram equalization for image contrast enhancement[J]. Optik-International Journal for Light and Electron Optics,2013,124(5):425-431. doi: 10.1016/j.ijleo.2011.12.057
    [9] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54.

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54.
    [10] 范凌云,梁修荣. 基于小波分解子带直方图匹配的矿井视频图像增强方法[J]. 金属矿山,2016(6):130-133.

    FAN Lingyun,LIANG Xiurong. Mine video images enhancement method based on the histogram matching method of the sub-bands of wavelet transform[J]. Metal Mine,2016(6):130-133.
    [11] 程德强,郑珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31-34.

    CHENG Deqiang,ZHENG Zhen,JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31-34.
    [12] 智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190-2197.

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non-uniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190-2197.
    [13] LYU Feifan, LU Feng, WU Jianhua, et al. MBLLEN: low-light image/video enhancement using CNNs[C]. British Machine Vision Conference, Newcastle, 2018: 220-233.
    [14] WANG Yang, CAO Yang, ZHA Zhengjun, et al. Progressive retinex: mutually reinforced illumination-noise perception network for low light image enhancement[C]. Proceedings of the 27th ACM International Conference on Multimedia, Nice, 2019: 2015-2023.
    [15] FAN Minhao, WANG Wenjing, YANG Wenhan, et al. Integrating semantic segmentation and Retinex model for low-light image enhancement[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, 2020: 2317-2325.
    [16] 樊占文,刘波. 基于改进的Retinex低照度图像自适应增强技术研究[J]. 工矿自动化,2021,47(增刊1):126-130.

    FAN Zhanwen,LIU Bo. Research on adaptive enhancement technology of low illumination image based on improved Retinex[J]. Industry and Mine Automation,2021,47(S1):126-130.
    [17] ZHAO Zunjin,XIONG Bangshu,WANG Lei,et al. RetinexDIP:a unified deep framework for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022,32(3):1076-1088. doi: 10.1109/TCSVT.2021.3073371
    [18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 2818-2826.
    [19] DING Xiaohan, GUO Yuchen, DING Guiguang, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]. IEEE/CVF International Conference on Computer Vision, Seoul, 2019: 1911-1920.
    [20] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep Retinex decomposition for low-light enhancement[C]. British Machine Vision Conference, 2018.
    [21] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1777-1786.
    [22] YANG Wenhan, WANG Shiqi, FANG Yuming, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 3060-3069.
    [23] LIM S,KIM W. DSLR:deep stacked laplacian restorer for low-light image enhancement[J]. IEEE Transactions on Multimedia,2020,23:4272-4284.
    [24] LU Kun,ZHANG Lihong. TBEFN:a two-branch exposure-fusion network for low-light image enhancement[J]. IEEE Transactions on Multimedia,2020,23:4093-4105.
    [25] LIU Risheng, MA Long, ZHANG Jia'ao, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021.
    [26] MITTAL A,SOUNDARARAJAN R,BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters,2013,20(3):209-212. doi: 10.1109/LSP.2012.2227726
    [27] GU Ke,LIN Weisi,ZHAI Guangtao,et al. No-reference quality metric of contrast-distorted images based on information maximization[J]. IEEE Transactions on Cybernetics,2017,47(12):4559-4565. doi: 10.1109/TCYB.2016.2575544
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  129
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2023-03-29
  • 网络出版日期:  2022-10-21

目录

    /

    返回文章
    返回