留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于YOLOv5s−SDE的带式输送机煤矸目标检测

张磊 王浩盛 雷伟强 王斌 林建功

张磊,王浩盛,雷伟强,等. 基于YOLOv5s−SDE的带式输送机煤矸目标检测[J]. 工矿自动化,2023,49(4):106-112.  doi: 10.13272/j.issn.1671-251x.2022080043
引用本文: 张磊,王浩盛,雷伟强,等. 基于YOLOv5s−SDE的带式输送机煤矸目标检测[J]. 工矿自动化,2023,49(4):106-112.  doi: 10.13272/j.issn.1671-251x.2022080043
ZHANG Lei, WANG Haosheng, LEI Weiqiang, et al. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation,2023,49(4):106-112.  doi: 10.13272/j.issn.1671-251x.2022080043
Citation: ZHANG Lei, WANG Haosheng, LEI Weiqiang, et al. Coal gangue target detection of belt conveyor based on YOLOv5s-SDE[J]. Journal of Mine Automation,2023,49(4):106-112.  doi: 10.13272/j.issn.1671-251x.2022080043

基于YOLOv5s−SDE的带式输送机煤矸目标检测

doi: 10.13272/j.issn.1671-251x.2022080043
基金项目: 山西省研究生教育创新项目(2021Y739);2022年大同市科技计划重点研发(高新技术领域)项目(2022005);山西大同大学2022年度校级揭榜招标项目(2021ZBZX3);山西大同大学2021年度产学研专项研究项目(2021CXZ2);山西大同大学研究生教育创新项目(21CX02,21CX37)。
详细信息
    作者简介:

    张磊(1984—),男,山西大同人,副教授,主要从事智能采矿、煤矿地质等方面的研究工作,E-mail:dtblack84@163.com

  • 中图分类号: TD634

Coal gangue target detection of belt conveyor based on YOLOv5s-SDE

  • 摘要: 传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改进,构建了YOLOv5s−SDE模型,提出了基于YOLOv5s−SDE的带式输送机煤矸目标检测方法。YOLOv5s−SDE模型通过在主干网络中添加压缩和激励(SE)模块,以增强有用特征,抑制无用特征,改善小目标煤矸检测效果;利用深度可分离卷积替换普通卷积,以减少参数量和计算量;将边界框回归损失函数CIoU替换为EIoU,提高了模型的收敛速度和检测精度。消融实验结果表明:YOLOv5s−SDE模型对煤矸图像的检测准确率达87.9%,平均精度均值(mAP)达92.5%,检测速度达59.9帧/s,可有效检测煤和矸石,满足实时检测需求;与YOLOv5s模型相比,YOLOv5s−SDE模型的准确率下降2.3%,mAP提升1.3%,参数量减少22.2%,计算量下降24.1%,检测速度提升6.4%。同类改进模型对比实验结果表明,YOLOv5s−STA与YOLOv5s−Ghost模型的检测精度明显偏低,YOLOv5s−SDE模型与YOLOv5s模型及YOLOv5s−CBAM模型的检测效果整体相近,但在运动模糊和低照度情况下,YOLOv5s−SDE模型整体检测效果更优。

     

  • 图  1  YOLOv5s−SDE结构

    Figure  1.  YOLOv5s -SDE structure

    图  2  SE模块

    Figure  2.  Squeeze-and-excitation module

    图  3  深度可分离卷积结构

    Figure  3.  Structure of depthwise separable convolution

    图  4  数据集样本

    Figure  4.  Dataset samples

    图  5  目标检测模型训练结果

    Figure  5.  Training results of target detection models

    图  6  不同改进YOLOv5s模型检测效果对比

    Figure  6.  Comparison of detection effects of different improved YOLOv5s models

    表  1  消融实验结果

    Table  1.   Ablation experiment results

    网络模型SE模块深度可分离卷积EIoU准确率/%mAP/%参数量/105每秒浮点运算次数/108速度/(帧·s−1
    YOLOv5s×××90.291.270.215.856.3
    优化模型1××92.891.070.216.054.4
    优化模型2××85.685.854.612.062.1
    优化模型3××91.992.170.215.856.0
    YOLOv5s−SDE87.992.554.612.059.9
    下载: 导出CSV

    表  2  不同改进YOLOv5s模型对比实验结果

    Table  2.   Comparative experimental results of different improved YOLOv5s models

    模型准确
    率/%
    mAP/%参数量/
    105
    每秒浮点
    运算次数/108
    速度/
    (帧·s−1
    YOLOv5s90.291.270.215.856.3
    YOLOv5s−Ghost84.289.362.414.054.9
    YOLOv5s−CBAM90.791.872.116.055.4
    YOLOv5s−STA83.184.855.220.675.2
    YOLOv5s−SDE87.992.554.612.059.9
    下载: 导出CSV
  • [1] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26.

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
    [2] ZHANG Ningbo, LIU Changyou. Radiation characteristics of natural gamma-ray from coal and gangue for recognition in top coal caving[J]. Scientific Reports, 2018, 8. DOI: 10.1038/s41598-017-18625-y.
    [3] 王闰泽,郎利影,席思星. 用于智能煤矸分选机器人的改进型VGG网络煤矸识别模型[J]. 煤炭技术,2022,41(1):237-241.

    WANG Runze,LANG Liying,XI Sixing. Improved VGG network coal gangue recognition model for intelligent coal gangue sorting robot[J]. Coal Technology,2022,41(1):237-241.
    [4] 司垒,谭超,朱嘉皓,等. 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报,2022,43(9):193-205.

    SI Lei,TAN Chao,ZHU Jiahao,et al. A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument,2022,43(9):193-205.
    [5] 桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133.

    GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
    [6] 王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.

    WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
    [7] 鲁恒润,王卫东,徐志强,等. 基于机器视觉的煤矸特征提取与分类研究[J]. 煤炭工程,2018,50(8):137-140.

    LU Hengrun,WANG Weidong,XU Zhiqiang,et al. Extraction and classification of coal and gangue image features based on machine vision[J]. Coal Engineering,2018,50(8):137-140.
    [8] 单鹏飞,孙浩强,来兴平,等. 基于改进Faster R−CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382-1394.

    SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382-1394.
    [9] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [10] 雷世威,肖兴美,张明. 基于改进YOLOv3的煤矸识别方法研究[J]. 矿业安全与环保,2021,48(3):50-55.

    LEI Shiwei,XIAO Xingmei,ZHANG Ming. Research on coal and gangue identification method based on improved YOLOv3[J]. Mining Safety & Environmental Protection,2021,48(3):50-55.
    [11] 来文豪,周孟然,胡锋,等. 基于多光谱成像和改进YOLO v4的煤矸石检测[J]. 光学学报,2020,40(24):72-80.

    LAI Wenhao,ZHOU Mengran,HU Feng,et al. Coal gangue detection based on multi-spectral imaging and improved YOLO v4[J]. Acta Optica Sinica,2020,40(24):72-80.
    [12] 李永上,马荣贵,张美月. 改进YOLOv5s+DeepSORT的监控视频车流量统计[J]. 计算机工程与应用,2022,58(5):271-279.

    LI Yongshang,MA Ronggui,ZHANG Meiyue. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT[J]. Computer Engineering and Applications,2022,58(5):271-279.
    [13] 沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118.

    SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
    [14] 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版),2021,51(1):27-38.

    XU Tao,MA Ke,LIU Caihua. Multi object pedestrian tracking based on deep learning[J]. Journal of Jilin University(Engineering and Technology Edition),2021,51(1):27-38.
    [15] 杜京义,史志芒,郝乐,等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化,2021,47(11):119-125.

    DU Jingyi,SHI Zhimang,HAO Le,et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation,2021,47(11):119-125.
    [16] 宋晓茹,杨佳,高嵩,等. 基于注意力机制与多尺度特征融合的行人重识别方法[J]. 科学技术与工程,2022,22(4):1526-1533.

    SONG Xiaoru,YANG Jia,GAO Song,et al. Person re-identification method based on attention mechanism and multi-scale feature fusion[J]. Science Technology and Engineering,2022,22(4):1526-1533.
    [17] 张璐,李道亮,曹新凯,等. 基于深度可分离卷积网络的粘连鱼体识别方法[J]. 农业工程学报,2021,37(17):160-167.

    ZHANG Lu,LI Daoliang,CAO Xinkai,et al. Recognition method for adhesive fish based on depthwise separable convolution network[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(17):160-167.
    [18] 杨永波,李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用,2022,58(9):201-207. doi: 10.3778/j.issn.1002-8331.2111-0346

    YANG Yongbo,LI Dong. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications,2022,58(9):201-207. doi: 10.3778/j.issn.1002-8331.2111-0346
    [19] 刘普壮. 基于改进YOLO算法的煤矸识别方法与实验研究[D]. 淮南: 安徽理工大学, 2022.

    LIU Puzhuang. Research on coal and gangue recognition method and experiment based on improved YOLO algorithm[D]. Huainan: Anhui University of Science and Technology, 2022.
    [20] 何雨,田军委,张震,等. YOLOv5目标检测的轻量化研究[J]. 计算机工程与应用,2023,59(1):92-99.

    HE Yu,TIAN Junwei,ZHANG Zhen,et al. Lightweight research of YOLOv5 target detection[J]. Computer Engineering and Applications,2023,59(1):92-99.
    [21] ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. doi: 10.1016/j.neucom.2022.07.042
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  957
  • HTML全文浏览量:  109
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回