留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Mask R−CNN的刮板输送机铁质异物多目标检测

史凌凯 耿毅德 王宏伟 王洪利

史凌凯,耿毅德,王宏伟,等. 基于改进Mask R−CNN的刮板输送机铁质异物多目标检测[J]. 工矿自动化,2022,48(10):55-61.  doi: 10.13272/j.issn.1671-251x.2022080029
引用本文: 史凌凯,耿毅德,王宏伟,等. 基于改进Mask R−CNN的刮板输送机铁质异物多目标检测[J]. 工矿自动化,2022,48(10):55-61.  doi: 10.13272/j.issn.1671-251x.2022080029
SHI Lingkai, GENG Yide, WANG Hongwei, et al. Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN[J]. Journal of Mine Automation,2022,48(10):55-61.  doi: 10.13272/j.issn.1671-251x.2022080029
Citation: SHI Lingkai, GENG Yide, WANG Hongwei, et al. Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN[J]. Journal of Mine Automation,2022,48(10):55-61.  doi: 10.13272/j.issn.1671-251x.2022080029

基于改进Mask R−CNN的刮板输送机铁质异物多目标检测

doi: 10.13272/j.issn.1671-251x.2022080029
基金项目: 山西省基础研究计划项目(202103021223123);山西省揭榜招标项目(20201101005)。
详细信息
    作者简介:

    史凌凯(1996—),男,山西长治人,硕士研究生,研究方向为煤矿运输设备异物识别与集控,E-mail:2636073838@qq.com

    通讯作者:

    王宏伟(1977—),女,黑龙江勃利人,教授,博士,博士研究生导师,主要研究方向为煤机装备智能化、人工智能与5G+智慧矿山等,E-mail:lntuwhw@126.com

  • 中图分类号: TD634.2

Multi-object detection of iron foreign bodies in scraper conveyor based on improved Mask R-CNN

  • 摘要: 刮板输送机是煤矿井下的关键运输设备,铁质异物进入刮板输送机会引发磨损、断链等,甚至会造成停产、伤人等严重事故。现有刮板输送机异物识别方法存在对井下图像的适应性较差、无法区分异物类别与数量等问题。针对上述问题,提出了一种基于改进掩码区域卷积神经网络(Mask R−CNN)的刮板输送机铁质异物多目标检测方法。采用基于Laplace算子的图像增强算法对井下低照度、高粉尘环境下采集的图像进行预处理,对增强后的图像进行标注,制作数据集。采用Mask R−CNN 模型的ResNet−50特征提取器获取铁质异物图像特征;采用特征金字塔网络进行特征融合,保证同时拥有高层的语义特征(如类别、属性等)和低层的轮廓特征(如颜色、轮廓、纹理等),以提高小尺度铁质异物识别精度;针对Mask R−CNN模型生成的锚点与待检测的铁质异物尺寸不对应的问题,对Mask R−CNN模型进行改进,采用k−meansⅡ聚类算法代替原来的锚点生成方案,通过遍历数据集中标注框的长宽信息得到聚类中心点,实现刮板输送机铁质异物多目标检测。实验结果表明,改进Mask R−CNN模型对单张图像的平均检测时间为0.732 s,与Mask R−CNN,YOLOv5相比,分别缩短0.093,0.002 s;平均精度为91.7%,与Mask R−CNN,YOLOv5相比,分别提高11.4%,2.9%。

     

  • 图  1  刮板输送机铁质异物多目标检测流程

    Figure  1.  Multi-object detection process of iron foreign bodies in scraper conveyor

    图  2  Mask R−CNN模型结构

    Figure  2.  Structure of mask region-convolutional neural network model

    图  3  FPN结构

    Figure  3.  Structure of feature pyramid networks

    图  4  刮板输送机铁质异物智能识别实验台

    Figure  4.  Test bed for intelligent identification of iron foreign bodies in scraper conveyor

    图  5  铁质异物样本

    Figure  5.  Sample of iron foreign bodies

    图  6  图像增强前后效果对比

    Figure  6.  Comparison of image effects before and after enhancement

    图  7  数据集构建

    Figure  7.  Dataset construction

    图  8  图像增强前后模型损失值对比

    Figure  8.  Comparison of model loss values before and after image enhancement

    图  9  模型改进前后训练结果对比

    Figure  9.  Comparison of training results before and after model improvement

    图  10  刮板输送机5种常见铁质异物多目标检测效果

    Figure  10.  Multi-object detection effect of five common iron foreign bodies in scraper conveyor

    表  1  实验环境配置

    Table  1.   Experimental environment configuration

    实验环境配置
    操作系统Windows 10 专业版
    显卡NVIDIA Quadro P620
    处理器Intel(R)Core(TM)i7−10875H CPU
    学习框架Tensorflow
    下载: 导出CSV

    表  2  不同模型检测效果对比

    Table  2.   Comparison of detection effects of different models

    模型检出
    张数
    未检出
    张数
    单张图像平均
    检测时间/s
    平均
    精度/%
    Mask R−CNN642320.82580.3
    YOLOv5658160.73488.8
    改进Mask R−CNN66790.73291.7
    下载: 导出CSV
  • [1] 任国强,韩洪勇,李成江,等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化,2021,47(12):128-133.

    REN Guoqiang,HAN Hongyong,LI Chengjiang,et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation,2021,47(12):128-133.
    [2] 杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83.

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83.
    [3] 吴守鹏,丁恩杰,俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全,2019,50(12):127-130. doi: 10.13347/j.cnki.mkaq.2019.12.029

    WU Shoupeng,DING Enjie,YU Xiao. Foreign body identification of belt based on improved FPN[J]. Safety in Coal Mines,2019,50(12):127-130. doi: 10.13347/j.cnki.mkaq.2019.12.029
    [4] 王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.

    WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
    [5] 王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943. doi: 10.13433/j.cnki.1003-8728.20200284

    WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943. doi: 10.13433/j.cnki.1003-8728.20200284
    [6] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397. doi: 10.1109/TPAMI.2018.2844175
    [7] 翁玉尚,肖金球,夏禹. 改进Mask R−CNN算法的带钢表面缺陷检测[J]. 计算机工程与应用,2021,57(19):235-242. doi: 10.3778/j.issn.1002-8331.2010-0446

    WENG Yushang,XIAO Jinqiu,XIA Yu. Strip surface defect detection based on improved Mask R-CNN algorithm[J]. Computer Engineering and Applications,2021,57(19):235-242. doi: 10.3778/j.issn.1002-8331.2010-0446
    [8] 徐慧芳,黄冬梅,贺琪,等. 改进Mask R−CNN模型的海洋锋检测[J]. 中国图象图形学报,2021,26(12):2981-2990.

    XU Huifang,HUANG Dongmei,HE Qi,et al. Ocean front detection method based on improved Mask R-CNN[J]. Journal of Image and Graphics,2021,26(12):2981-2990.
    [9] 朱繁,王洪元,张继. 基于改进的Mask R−CNN的行人细粒度检测算法[J]. 计算机应用,2019,39(11):3210-3215.

    ZHU Fan,WANG Hongyuan,ZHANG Ji. Fine-grained pedestrian detection algorithm based on improved Mask R-CNN[J]. Journal of Computer Applications,2019,39(11):3210-3215.
    [10] 储珺,束雯,周子博,等. 结合语义和多层特征融合的行人检测[J]. 自动化学报,2022,48(1):282-291.

    CHU Jun,SHU Wen,ZHOU Zibo,et al. Combining semantics with multi-level feature fusion for pedestrian detection[J]. Acta Automatica Sinica,2022,48(1):282-291.
    [11] 张晓雪. 基于Mask R−CNN的自动驾驶目标检测分析[J]. 科学与信息化,2019(11):115-117,120.

    ZHANG Xiaoxue. Automatic driving target detection based on Mask R-CNN[J]. Science and Informatization,2019(11):115-117,120.
    [12] 杨俊闯,赵超. K−Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7-14,63.

    YANG Junchuang,ZHAO Chao. Survey on K-Means clustering algorithm[J]. Computer Engineering and Applications,2019,55(23):7-14,63.
    [13] 王希. 煤矿井下运输异物检测关键技术研究[J]. 智能建筑与工程机械,2021,3(9):119-121.

    WANG Xi. Research on key technology of detecting foreign body in coal mine underground transportation[J]. Intelligent Building and Construction Machinery,2021,3(9):119-121.
    [14] 程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369. doi: 10.13225/j.cnki.jccs.xr21.1736

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369. doi: 10.13225/j.cnki.jccs.xr21.1736
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  54
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-10-11

目录

    /

    返回文章
    返回