留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

埋管抽采位置及负压变化对采空区煤自燃危险区域的影响

张仲清

张仲清. 埋管抽采位置及负压变化对采空区煤自燃危险区域的影响[J]. 工矿自动化,2023,49(10):96-103.  doi: 10.13272/j.issn.1671-251x.2022080016
引用本文: 张仲清. 埋管抽采位置及负压变化对采空区煤自燃危险区域的影响[J]. 工矿自动化,2023,49(10):96-103.  doi: 10.13272/j.issn.1671-251x.2022080016
ZHANG Zhongqing. The influence of buried pipe extraction position and negative pressure change on the dangerous area ofcoal spontaneous combustion in the goaf[J]. Journal of Mine Automation,2023,49(10):96-103.  doi: 10.13272/j.issn.1671-251x.2022080016
Citation: ZHANG Zhongqing. The influence of buried pipe extraction position and negative pressure change on the dangerous area ofcoal spontaneous combustion in the goaf[J]. Journal of Mine Automation,2023,49(10):96-103.  doi: 10.13272/j.issn.1671-251x.2022080016

埋管抽采位置及负压变化对采空区煤自燃危险区域的影响

doi: 10.13272/j.issn.1671-251x.2022080016
基金项目: 河南省瓦斯地质与瓦斯治理重点实验室——省部共建国家重点实验室培育基地开放基金资助项目(WS2019A02)。
详细信息
    作者简介:

    张仲清(1973—),男,山西朔州人,工程师,现从事煤矿企业管理工作,E-mail:1625871484@qq.com

  • 中图分类号: TD712

The influence of buried pipe extraction position and negative pressure change on the dangerous area ofcoal spontaneous combustion in the goaf

  • 摘要: 瓦斯抽采是治理矿井灾害常用方式之一,但在抽采过程中会增加采空区漏风量,进而增加遗煤自燃风险,直接影响采空区煤自燃危险区域分布。以中煤大同能源有限责任公司塔山煤矿30503工作面为研究对象,根据采空区实际情况建立几何模型,采用数值模拟方法分析了不同埋管抽采位置和抽采负压对采空区煤自燃危险区域的影响。结果表明:① 随着进风侧埋管抽采位置的深入,回风侧氧气体积分数呈增大趋势,而氧化带宽度变化不大;进风侧氧气体积分数整体呈减小趋势,氧化带宽度先减小后增大;采空区氧化带面积先减小后增大。② 在进风侧固定埋管抽采位置,抽采负压的变化对采空区进风侧氧气分布的影响更大,而对回风侧几乎没有影响。③ 随着抽采负压增大,进风侧氧化带宽度先减小后增大,而回风侧氧化带宽度几乎不变;采空区氧化带面积先减小后增大,氧化带面积与抽采负压呈二次函数关系。④ 最佳埋管抽采位置为采空区进风侧距离工作面20 m处,最佳抽采负压为5 000 Pa,此时采空区氧化带面积最小,即煤自燃危险区域最小。

     

  • 图  1  煤氧化时间与氧气体积分数关系曲线

    Figure  1.  Relationship curve of coal oxidation time and oxygen volume fraction

    图  2  采空区几何模型

    Figure  2.  Geometric model of goaf

    图  3  气体测点布置

    Figure  3.  Arrangement of gas measuring points

    图  4  采空区进风侧氧气体积分数随采空区深度变化曲线

    Figure  4.  Variation curve of oxygen volume fraction at air inlet side of goaf with goaf depth

    图  5  不同埋管抽采位置下采空区氧气体积分数分布

    Figure  5.  Distribution of oxygen volume fraction in goaf under different buried pipe extraction positions

    图  6  进风侧氧气体积分数随采空区深度变化曲线

    Figure  6.  Variation curve of oxygen volume fraction at air inlet side with goaf depth

    图  7  回风侧氧气体积分数随采空区深度变化曲线

    Figure  7.  Variation curve of oxygen volume fraction at return air side with goaf depth

    图  8  不同埋管抽采位置下氧化带面积变化曲线

    Figure  8.  Variation curve of oxidation zone area under different buried pipe extraction positions

    图  9  不同抽采负压下采空区氧气体积分数分布

    Figure  9.  Distribution of oxygen volume fraction in gob under different extraction negative pressures

    图  10  进风侧氧气体积分数随采空区深度变化曲线

    Figure  10.  Variation curve of oxygen volume fraction at air intake side with goaf depth

    图  11  回风侧氧气体积分数随采空区深度变化曲线

    Figure  11.  Variation curve of oxygen volume fraction at return air side with goaf depth

    图  12  不同抽采负压下氧化带面积变化曲线

    Figure  12.  Variation curve of oxidation zone area under different extraction negative pressures

    表  1  模型参数

    Table  1.   Parameters of model

    模型组成部分尺寸/(m×m×m)空间填充
    30503进回风巷4.6×5×20流体
    30503工作面193×11.4×4流体
    30503采空区240×193×16.4以压实煤体为主体的多孔介质
    地表裂隙173×0.2×15流体
    垮落部分193×200×4.6多孔介质
    上覆采空区250×195×9以压实煤体为主体的多孔介质
    下载: 导出CSV
  • [1] 李林. 采空区煤自燃环境瓦斯运移积聚规律研究[D]. 徐州:中国矿业大学,2020.

    LI Lin. Study on methane migration and accumulation in spontaneous coal combustion environment of a coal mined-out area[D]. Xuzhou:China University of Mining and Technology,2020.
    [2] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001

    DENG Jun,LI Bei,WANG Kai,et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology,2016,44(10):1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001
    [3] 戴林超,曹偈,赵旭生,等. 采空区瓦斯涌出强度对其流动规律的影响研究[J]. 安全与环境学报,2019,19(6):1963-1970. doi: 10.13637/j.issn.1009-6094.2019.06.014

    DAI Linchao,CAO Jie,ZHAO Xusheng,et al. Probe into the influence of the gas effusion intensity in accordance with its flowing regularity in the goaf[J]. Journal of Safety and Environment,2019,19(6):1963-1970. doi: 10.13637/j.issn.1009-6094.2019.06.014
    [4] 吴怡. 抽采条件下采空区自燃特性数值模拟研究[D]. 唐山:华北理工大学,2019.

    WU Yi. Numerical simulation of goaf spontaneous combustion characteristics under extraction conditions[D]. Tangshan:North China University of Science and Technology,2019.
    [5] 慕兰兰,传金平,杨小彬,等. 砚北煤矿特厚易自燃煤层邻近采空区瓦斯抽采与煤自燃耦合研究[J]. 矿业安全与环保,2023,50(1):25-36. doi: 10.19835/j.issn.1008-4495.2023.01.005

    MU Lanlan,CHUAN Jinping,YANG Xiaobin,et al. Coupling study of gas extraction and coal spontaneous combustion in goaf adjacent to extra-thick spontaneous combustion coal seam in Yanbei Coal Mine[J]. Mining Safety & Environmental Protection,2023,50(1):25-36. doi: 10.19835/j.issn.1008-4495.2023.01.005
    [6] 王向东,穆永亮,刘伟伟. 工作面初采阶段高位定向长钻孔瓦斯抽采技术研究与实践[J]. 煤炭技术,2023,42(2):143-146. doi: 10.13301/j.cnki.ct.2023.02.033

    WANG Xiangdong,MU Yongliang,LIU Weiwei. Research and practice on gas extraction technology of high directional long drilling holes in working face initial mining stage[J]. Coal Technology,2023,42(2):143-146. doi: 10.13301/j.cnki.ct.2023.02.033
    [7] 崔传发. 采空区瓦斯抽采钻孔参数及注氮防灭火研究[J]. 工矿自动化,2020,46(3):12-20. doi: 10.13272/j.issn.1671-251x.2019050049

    CUI Chuanfa. Research on gas drainage drilling parameters and nitrogen injection for fire prevention in goaf[J]. Industry and Mine Automation,2020,46(3):12-20. doi: 10.13272/j.issn.1671-251x.2019050049
    [8] 施式亮,曾明圣,李贺,等. 煤自燃与瓦斯共生灾害演化与预警[J]. 煤矿安全,2022,53(9):9-16.

    SHI Shiliang,ZENG Mingsheng,LI He,et al. Coal spontaneous combustion and gas symbiotic disasters evolution and early warning[J]. Safety in Coal Mines,2022,53(9):9-16.
    [9] 王飞,谷晓玲. 综放工作面采空区抽放注氮与遗煤自燃三耦合关系研究[J]. 煤炭技术,2021,40(2):145-147. doi: 10.13301/j.cnki.ct.2021.02.040

    WANG Fei,GU Xiaoling. Study on coupling relationship between nitrogen injection and coal spontaneous combustion in goaf of fully mechanized top coal caving face[J]. Coal Technology,2021,40(2):145-147. doi: 10.13301/j.cnki.ct.2021.02.040
    [10] 张京兆,王建国,闫涛,等. 高抽巷层位及负压的变化对采空区自燃氧化带影响的数值模拟[J]. 矿业研究与开发,2020,40(10):108-112. doi: 10.13827/j.cnki.kyyk.2020.10.020

    ZHANG Jingzhao,WANG Jianguo,YAN Tao,et al. Numerical simulation on the influence of the location of high extraction lane and the change of negative pressure on the spontaneous combustion oxidation zone in the goaf[J]. Mining Research and Development,2020,40(10):108-112. doi: 10.13827/j.cnki.kyyk.2020.10.020
    [11] 汪腾蛟,聂朝刚,杨小彬,等. 考虑温度变化的采空区瓦斯抽采数值模拟[J]. 煤炭科学技术,2021,49(7):85-94. doi: 10.13199/j.cnki.cst.2021.07.012

    WANG Tengjiao,NIE Chaogang,YANG Xiaobin,et al. Numerical simulation of gas drainage in gob considering temperature change[J]. Coal Science and Technology,2021,49(7):85-94. doi: 10.13199/j.cnki.cst.2021.07.012
    [12] 范加锋. 低位巷瓦斯抽采条件下采空区遗煤自燃规律研究[J]. 工矿自动化,2023,49(2):102-108,124. doi: 10.13272/j.issn.1671-251x.2022070031

    FAN Jiafeng. Study on spontaneous combustion law of residual coal in goaf under the condition of gas extraction in the low-level roadway[J]. Journal of Mine Automation,2023,49(2):102-108,124. doi: 10.13272/j.issn.1671-251x.2022070031
    [13] 王继仁,张英,黄戈,等. 采空区不同瓦斯抽采方法与自燃合理平衡的数值模拟[J]. 中国安全生产科学技术,2015,11(8):26-32.

    WANG Jiren,ZHANG Ying,HUANG Ge,et al. Numerical simulation on reasonable balance between different gas drainage methods and spontaneous combustion in gob area[J]. Journal of Safety Science and Technology,2015,11(8):26-32.
    [14] 杜阳,翁旭泽,戚绪尧,等. 远距离抽采条件下采空区煤自燃区域分布规律[J]. 煤矿安全,2020,51(1):196-199,205. doi: 10.13347/j.cnki.mkaq.2020.01.044

    DU Yang,WENG Xuze,QI Xuyao,et al. Distribution law of spontaneous combustion danger zone of coal in goaf under long distance extraction[J]. Safety in Coal Mines,2020,51(1):196-199,205. doi: 10.13347/j.cnki.mkaq.2020.01.044
    [15] 文虎,王文,程小蛟,等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保,2020,47(6):1-7. doi: 10.19835/j.issn.1008-4495.2020.06.001

    WEN Hu,WANG Wen,CHENG Xiaojiao,et al. Study on the effect of different extraction conditions on "three zones" of coal spontaneous combustion in goaf[J]. Mining Safety & Environmental Protection,2020,47(6):1-7. doi: 10.19835/j.issn.1008-4495.2020.06.001
    [16] 邢旭东,庞奇,张宏斌,等. 不规则采空区防火注氮位置数值模拟研究[J]. 煤炭技术,2021,40(8):143-146. doi: 10.13301/j.cnki.ct.2021.08.036

    XING Xudong,PANG Qi,ZHANG Hongbin,et al. Numerical simulation of fire nitrogen injection parameters in irregular goaf[J]. Coal Technology,2021,40(8):143-146. doi: 10.13301/j.cnki.ct.2021.08.036
    [17] 刘轶康,牛会永,聂琦苗,等. 高地温矿井采空区煤自燃O2浓度场分布研究[J]. 工矿自动化,2021,47(8):108-114.

    LIU Yikang,NIU Huiyong,NIE Qimiao,et al. Study on the distribution of O2 concentration field of coal spontaneous combustion in high ground temperature goaf[J]. Industry and Mine Automation,2021,47(8):108-114.
    [18] 黎力,李治刚,奚弦,等. 采空区自然发火多场耦合数值模拟研究[J]. 中国矿业,2017,26(3):157-160. doi: 10.3969/j.issn.1004-4051.2017.03.032

    LI Li,LI Zhigang,XI Xian,et al. Multi-filed coupling numerical simulation of spontaneous combustion in goaf[J]. China Mining Magazine,2017,26(3):157-160. doi: 10.3969/j.issn.1004-4051.2017.03.032
    [19] 高光超,李宗翔,张春,等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J]. 安全与环境学报,2017,17(3):931-936. doi: 10.13637/j.issn.1009-6094.2017.03.023

    GAO Guangchao,LI Zongxiang,ZHANG Chun,et al. Numerical simulation for multi-field distribution characteristic features of the goaf based on 3D "O" type circle[J]. Journal of Safety and Environment,2017,17(3):931-936. doi: 10.13637/j.issn.1009-6094.2017.03.023
    [20] 屈世甲,安世岗,武福生,等. 大采高综采工作面采空区自燃“三带”研究[J]. 工矿自动化,2019,45(5):22-25. doi: 10.13272/j.issn.1671-251x.17403

    QU Shijia,AN Shigang,WU Fusheng,et al. Research on spontaneous combustion "three zones" in goaf of fully mechanized working face with large mining height[J]. Industry and Mine Automation,2019,45(5):22-25. doi: 10.13272/j.issn.1671-251x.17403
    [21] 孙留涛,段宇建,黄均泽. 青东煤矿10煤层标志性气体优选及自燃“三带”划分[J]. 工矿自动化,2018,44(11):56-61. doi: 10.13272/j.issn.1671-251x.2018070050

    SUN Liutao,DUAN Yujian,HUANG Junze. Optimization of index gases and division method of spontaneous combustion "three zones" in 10 coal seam of Qingdong Coal Mine[J]. Industry and Mine Automation,2018,44(11):56-61. doi: 10.13272/j.issn.1671-251x.2018070050
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  45
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2023-10-06
  • 网络出版日期:  2023-10-23

目录

    /

    返回文章
    返回