Hydraulic support digital twin joint modeling method
-
摘要: 目前液压支架建模方法存在建模方式单一、缺乏模型内部动作表达等问题,难以实现数字孪生模型的深度知识挖掘,且液压支架的建模只单独研究机械或者液压部分,很难掌握其整体动态特性。针对上述问题,以掩护式液压支架ZY6800/08/18D作为研究对象,提出了一种液压支架数字孪生体联合建模方法。利用SolidWorks软件建立液压支架机械系统和液压系统的三维实体模型,将三维实体模型生成.sldasm格式文件导入MapleSim软件中,使用运动副连接机械部分,液压元件连接液压部分,建立液压支架机械系统孪生模型和液压系统孪生模型,二者联合,与物理体通过数据库进行数据交互与模型优化。为了使模型1∶1映射物理体,建立了液压支架数字孪生体,包括系统层、信息层、物理层。对构建好的液压支架数字孪生体进行虚实一致性实验,在物理体与孪生体立柱输入相同信号的条件下分析二者连杆的角度变化是否一致,验证模型的合理性与准确性。结果表明:物理体与孪生体连杆角度拟合度为0.986,接近1,拟合程度较好,表明真实数据驱动下的孪生模型位姿信息与物理体运行结果基本一致;连杆角度的整体误差为−0.198~ +0.185°,在倾角传感器精度范围内,满足精度要求。数字孪生模型运动规律符合液压支架实际运动状态,实现了物理体与其孪生体的相互映射和交互融合。Abstract: The existing hydraulic support modeling method has the problems of single modeling mode and lack expression of internal actions of the model. It is difficult to realize deep knowledge mining of the digital twin model. The modeling of hydraulic support only studies the mechanical or hydraulic parts separately. It is difficult to master its overall dynamic characteristics. In order to solve the above problems, taking the shield hydraulic support ZY6800/08/18D as the research object, a hydraulic support digital twin joint modeling method is proposed. The three-dimensional solid models of the mechanical system and the hydraulic system of the hydraulic support are established by using the SolidWorks software. The three-dimensional solid model is imported into the MapleSim software by .sldasm file format. The kinematic pair is used for connecting the mechanical part, and the hydraulic element is used for connecting the hydraulic part. The twin models of the mechanical system and the hydraulic system of the hydraulic support are established. The twin models are combined to carry out data interaction and model optimization with the physical entity through a database. In order to make the model one to one mapping physical entity, the hydraulic support digital twin is established, including system layer, information layer and physical layer. The consistency experiment of virtual and real is carried out on the digital twin of the hydraulic support. Under the condition of inputting the same signal into the physical entity and the twin, the consistency of the angle change of the connecting rod between the physical entity and the twin is analyzed. The rationality and accuracy of the model are verified. The results show that the fitting degree of the angle of the connecting rod between the physical entity and the twin is 0.986, which is close to 1. The fitting degree is good, which indicates that the position and attitude information of the twin model driven by real data is basically consistent with the running result of the physical entity. The overall angle error of the connecting rod is from −0.198° to +0.185°, which meets the precision requirements within the precision range of the tilt sensor. The motion law of the digital twin model conforms to the actual motion state of the hydraulic support. The mutual mapping and mutual fusion between the physical entity and the digital twin are realized.
-
Key words:
- hydraulic support /
- digital twin /
- mechanical system /
- hydraulic system /
- joint modeling /
- physical entity /
- twin /
- virtual reality consistency
-
表 1 液压支架机械结构添加约束
Table 1. Adding constraints to the mechanical structure of hydraulic support
第1构件 第2构件 约束类型 底座 连杆 转动副 掩护梁 连杆 转动副 顶梁 掩护梁 转动副 立柱一级缸 底座 球铰运动副 活塞杆 顶梁 球铰运动副 立柱一级缸 立柱二级缸 移动副 立柱二级缸 活塞杆 移动副 -
[1] 于涛,刘秀杰,张玉娇,等. 基于Pro/E的液压支架三维建模和运动仿真[J]. 工矿自动化,2016,42(4):81-82.YU Tao,LIU Xiujie,ZHANG Yujiao,et al. Three-dimension modeling and motion simulation of hydraulic support based on Pro/E[J]. Industry and Mine Automation,2016,42(4):81-82. [2] 刘晓莲,李坤,赵雄鹏. 液压支架上升回路的AMESim建模和仿真[J]. 机械工程师,2020(12):153-155.LIU Xiaolian,LI Kun,ZHAO Xiongpeng. AMESim modeling and simulation of hydraulic support lifting circuit[J]. Mechanical Engineer,2020(12):153-155. [3] 刘晓莲,李坤,赵雄鹏. 基于AMESim的液压支架降柱动态特性建模仿真[J]. 机电信息,2020(33):110-111. doi: 10.3969/j.issn.1671-0797.2020.33.059LIU Xiaolian,LI Kun,ZHAO Xiongpeng. Modeling and simulation of dynamic characteristics of falling column of hydraulic support based on AMESim[J]. Mechanical and Electrical Information,2020(33):110-111. doi: 10.3969/j.issn.1671-0797.2020.33.059 [4] 蔡文书,程志红,沈春丰. 基于SolidWorks的液压支架三维建模和运动仿真[J]. 煤矿机械,2008,29(11):165-167. doi: 10.3969/j.issn.1003-0794.2008.11.074CAI Wenshu,CHENG Zhihong,SHEN Chunfeng. 3D modeling and dynamic simulation of hydraulic support with SolidWorks[J]. Coal Mine Machinery,2008,29(11):165-167. doi: 10.3969/j.issn.1003-0794.2008.11.074 [5] 葛世荣,王世博,管增伦,等. 数字孪生−应对智能化综采工作面技术挑战[J]. 工矿自动化,2022,48(7):1-12.GE Shirong,WANG Shibo,GUAN Zenglun,et al. Digital twin: meeting the technical challenges of intelligent fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):1-12. [6] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. [7] 谢嘉成. VR环境下综采工作面“三机”监测与动态规划方法研究[D]. 太原: 太原理工大学, 2018.XIE Jiacheng. Method of on monitoring and dynamic planning for three machines in a fully mechanized coal-mining face under VR environment[D]. Taiyuan: Taiyuan University of Technology, 2018. [8] 葛世荣, 张帆, 王世博, 等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报, 2020, 45(6): 1925-1936.GE Shirong, ZHANG Fan, WANG Shibo, et al. Digital twin for smart coal mining workface: technological frame and construction[J]. Journal of China Coal Society, 2020, 45(6): 1925-1936. [9] 洪飞. 基于数字孪生和数据驱动的新型煤矿智能支护监控系统设计[J]. 煤矿现代化,2021,30(5):116-118,122. doi: 10.3969/j.issn.1009-0797.2021.05.038HONG Fei. Design of a novel mine intelligent support monitoring system based on digital twin and data drive[J]. Coal Mine Modernization,2021,30(5):116-118,122. doi: 10.3969/j.issn.1009-0797.2021.05.038 [10] 黄伟福,李伟. 液控单向阀对液压支架立柱动态特性影响研究[J]. 煤矿机械,2021,42(9):41-45.HUANG Weifu,LI Wei. Study on influence of hydraulic control check valve on dynamic characteristics of hydraulic support prop[J]. Coal Mine Machinery,2021,42(9):41-45. [11] 王亮,李勇庆,江守波,等. 大采高液压支架带压移架系统AMESim分析[J]. 机械设计与制造,2021(8):121-125. doi: 10.3969/j.issn.1001-3997.2021.08.029WANG Liang,LI Yongqing,JIANG Shoubo,et al. AMESim analysis of the movement with pressure for large mining height hydraulic support[J]. Machinery Design & Manufacture,2021(8):121-125. doi: 10.3969/j.issn.1001-3997.2021.08.029 [12] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15.TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin model and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15. [13] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1-18. doi: 10.13196/j.cims.2018.01.001TAO Fei,LIU Weiran,LIU Jianhua,et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems,2018,24(1):1-18. doi: 10.13196/j.cims.2018.01.001 [14] 张世贤,张少春,谢晓东. 基于InfluxDB的监控设备通用运维管理平台[J]. 计算机系统应用,2021,30(12):123-127.ZHANG Shixian,ZHANG Shaochun,XIE Xiaodong. General operation and maintenance management platform for monitoring equipment based on InfluxDB[J]. Computer Systems & Applications,2021,30(12):123-127. [15] 刘宁宁. 基于VR虚拟现实的半实物综采实操平台[J]. 煤矿安全,2019,50(6):114-117.LIU Ningning. Semi-physical fully-mechanized mining practical operation platform based on VR[J]. Safety in Coal Mines,2019,50(6):114-117. [16] 苗丙,葛世荣,郭一楠,等. 煤矿数字孪生智采工作面系统构建[J]. 矿业科学学报,2022,7(2):143-153. doi: 10.19606/j.cnki.jmst.2022.02.001MIAO Bing,GE Shirong,GUO Yinan,et al. Construction of digital twin system for intelligent mining in coal mines[J]. Journal of Mining Science and Technology,2022,7(2):143-153. doi: 10.19606/j.cnki.jmst.2022.02.001 [17] 刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术[J]. 煤炭科学技术,2022,50(7):67-74. doi: 10.13199/j.cnki.cst.2021-1491LIU Xiaoxiong,WANG Haijun. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam[J]. Coal Science and Technology,2022,50(7):67-74. doi: 10.13199/j.cnki.cst.2021-1491