基于GWO−NSGA−Ⅱ混合算法的露天矿低碳运输调度

Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm

  • 摘要: 为了提高露天矿卡车运输效率、减少碳排放和节约运输成本,以纯电动卡车为研究对象,以运输成本、总排队时间(包含生产过程中的卡车充电时间、运行时间及维修等待时间)、矿石品位偏差为目标函数,并以破碎场破碎量、采矿场开采量、装车数量、矿石品位误差限制、车辆充电桩选择及充电限制为约束条件,建立了露天矿低碳运输调度优化模型。针对灰狼优化算法(GWO)和非支配排序遗传算法(NSGA−Ⅱ)用于求解露天矿纯电动矿用卡车低碳运输调度模型时前者容易陷入局部最优、后者容易获得全局最优但收敛缓慢的问题,提出了一种GWO−NSGA−Ⅱ混合算法。该混合算法在GWO算法中引入NSGA−Ⅱ的选择、交叉、变异3种遗传操作,有效防止算法陷入局部最优;在NSGA−Ⅱ的精英保留策略中引入狩猎和攻击操作,提高算法全局收敛的稳定性。通过5个标准测试函数验证了该混合算法在保证收敛性的情况下提升了稳定性。实例分析表明,与NSGA−Ⅱ,GWO相比,该混合算法在寻优速度上分别提高了48.7%和27.1%,在寻优精度上分别提高了17.1%和9.3%,且减少了卡车使用数量、碳排放量、运输距离和运输费用。

     

    Abstract: In order to improve truck transport efficiency, reduce carbon emissions and save transport costs in open-pit mines, pure electric trucks are taken as the research object. The objective function is transportation cost, total queuing time (including truck charging time, operation time and maintenance waiting time in the production process), and ore grade deviation. The constraints include the crushing capacity of the crushing site, mining capacity of the mining site, loading capacity, ore grade error limit, vehicle charging pile selection and charging limit. The optimization model of low carbon transportation scheduling of open-pit is established. The gray wolf optimization (GWO) and non-dominated sorting genetic algorithm-II (NSGA-II) have been used to solve the low-carbon transportation scheduling model for pure electric mining trucks in open-pit mines. The former is prone to get trapped in local optimum while the latter is likely to achieve a global optimum but converges slowly. In order to solve the above problems, a GWO-NSGA-II hybrid algorithm is proposed. The hybrid algorithm introduces three genetic operations of NSGA-II, selection, crossover and mutation, into the GWO algorithm to effectively prevent the algorithm from falling into local optimum. In order to improve the stability of the global convergence of the algorithm, hunting and attack operations are introduced into the elite retention strategy of NSGA-II. Five standard test functions are used to verify that the hybrid algorithm improves the stability while ensuring the convergence. The example analysis shows that, compared with NSGA-II and GWO, the hybrid algorithm improves the optimization speed by 48.7% and 27.1% respectively. The hybrid algorithm improves the optimization precision by 17.1% and 9.3% respectively. The hybrid algorithm reduces the number of trucks, carbon emissions, transportation distance and transportation costs.

     

/

返回文章
返回