留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用带式输送机托辊音频故障诊断方法

吴文臻 程继明 李标

吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071
引用本文: 吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071
WU Wenzhen, CHENG Jiming, LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071
Citation: WU Wenzhen, CHENG Jiming, LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.  doi: 10.13272/j.issn.1671-251x.2022070071

矿用带式输送机托辊音频故障诊断方法

doi: 10.13272/j.issn.1671-251x.2022070071
基金项目: 煤炭科学技术研究院有限公司科技发展基金项目(2021CX-I-10)。
详细信息
    作者简介:

    吴文臻(1983—),男,福建平潭人,副研究员,硕士,主要从事矿山智能化及自动化方面的研究工作,E-mail:wuwenzhen@ccrise.cn

  • 中图分类号: TD634

Audio fault diagnosis method of mine belt conveyor roller

  • 摘要: 现有矿用带式输送机托辊故障诊断方法一般是对托辊信号进行分解并转换至频域,从频域提取特征进行故障诊断,而常用的信号小波分解和经验模态分解方法存在小波基选择困难、易出现频谱混叠和端点效应的问题,导致故障诊断准确率较低。针对上述问题,提出了一种基于变分模态分解(VMD)−BP神经网络的矿用带式输送机托辊音频故障诊断方法。首先通过音频传感器采集矿用带式输送机沿线托辊的音频信号,并对音频信号进行预处理,以抑制音频信息中的噪声信号;然后采用VMD将音频信号按照中心频率分解成不同的IMF(本征模态函数)分量,提取各个IMF分量的峭度、重心频率、频率标准差等特征值;最后将特征值输入到已经训练好的BP神经网络,根据IMF分量特征值的差异,可以实现通过音频对矿用带式输送机托辊故障进行诊断,并可根据音频信号对应的传感器编号确定出故障托辊位置。以某煤矿实际采集的带式输送机托辊音频信息对基于VMD−BP神经网络的矿用带式输送机托辊音频故障诊断方法进行分析验证,结果表明:该方法在分解、提取音频信号特征时,可以避免分解过程中的频谱混叠与端点效应,总体故障诊断准确率达到96.15%,与采用BP神经网络的故障诊断方法和基于小波分解与BP神经网络的故障诊断方法相比分别提高了26.92%,15.38%,同时误检率也明显降低。

     

  • 图  1  基于VMD−BP神经网络的矿用带式输送机托辊音频故障诊断流程

    Figure  1.  Flow of audio fault diagnosis of mine belt conveyor roller based on VMD-BP neural network

    图  2  音频传感器布置

    Figure  2.  Audio sensor layout

    图  3  托辊正常状态下音频信号分解结果

    Figure  3.  Decomposition results of audio signal of roller in normal state

    图  4  托辊故障状态下音频信号分解结果

    Figure  4.  Decomposition results of audio signal of roller in fault state

    图  5  托辊正常状态功率谱

    Figure  5.  Power spectrum of roller in normal state

    图  6  托辊故障状态功率谱

    Figure  6.  Power spectrum of roller in fault state

    表  1  IMF特征项数据

    Table  1.   IMF characteristic item data

    故障类型IMF1IMF2IMF3IMF4
    S1C1/HzF1/HzS2C2/HzF2/HzS3C3/HzF3/HzS4C4/HzF4/Hz
    正常托辊3.08229.77225.362.53664.73158.312.621357.87376.962.921663.87373.40
    轴承故障2.66246.51318.782.82877.43436.22.501636.03411.083.5013588.75807.46
    托辊断裂5.84189.45286.543.34597.36389.523.121565.25447.524.532687.86678.69
    润滑不良3.51354.16427.243.05975.49648.252.881863.82543.924.253836.29924.25
    托辊堵转2.89316.28256.242.64680.59281.422.781728.46483.714.284095.62728.58
    下载: 导出CSV

    表  2  基于VMD−BP神经网络的故障诊断方法的故障诊断结果

    Table  2.   Fault diagnosis results of fault diagnosis method based on VMD-BP neural network

    故障故障出现
    次数
    故障检出
    次数
    误检
    次数
    准确率/%
    托辊断裂0000
    托辊堵转32066.67
    润滑不良3534197.14
    轴承故障14141100.00
    合计5250296.15
    下载: 导出CSV

    表  3  基于BP神经网络的故障诊断方法的故障诊断结果

    Table  3.   Fault diagnosis results of fault diagnosis method based on BP neural network

    故障故障出现
    次数
    故障检出
    次数
    误检
    次数
    准确率/%
    托辊断裂0000
    托辊堵转3010
    润滑不良3526374.29
    轴承故障1410171.43
    合计5236569.23
    下载: 导出CSV

    表  4  基于小波分解与BP神经网络的故障诊断方法的故障诊断结果

    Table  4.   Fault diagnosis results of fault diagnosis method based on wavelet decomposition and BP neural network

    故障故障出现
    次数
    故障检出
    次数
    误检
    次数
    准确率/%
    托辊断裂0000
    托辊堵转32166.67
    润滑不良3528280.00
    轴承故障1412285.71
    合计5242580.77
    下载: 导出CSV
  • [1] 王建勋. 煤矿输送带传输故障实时监测技术[J]. 工矿自动化,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012

    WANG Jianxun. Real-time fault monitoring technology for coal mine conveying belt[J]. Industry and Mine Automation,2015,41(1):45-48. doi: 10.13272/j.issn.1671-251x.2015.01.012
    [2] 张丽. 带式输送机滚筒温度检测装置设计[J]. 工矿自动化,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018

    ZHANG Li. Design of temperature detection device for drum of belt conveyor[J]. Industry and Mine Automation,2017,43(7):86-89. doi: 10.13272/j.issn.1671-251x.2017.07.018
    [3] 杨祥,田慕琴,李璐,等. 矿用带式输送机驱动滚筒轴承振动信号降噪方法[J]. 工矿自动化,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013

    YANG Xiang,TIAN Muqin,LI Lu,et al. Vibration signal denoising method for drive roller bearing of mine-used belt conveyor[J]. Industry and Mine Automation,2019,45(3):66-70. doi: 10.13272/j.issn.1671-251x.2018080013
    [4] 孙国栋,王俊豪,徐昀,等. CEEMD−WVD 多尺度时频图像的滚动轴承故障诊断[J]. 机械科学与技术,2020,39(5):688-694.

    SUN Guodong,WANG Junhao,XU Yun,et al. Rolling bearing fault diagnosis based on CEEMD-WVD multi-scale time-frequency image[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(5):688-694.
    [5] 彭程程. 基于二阶瞬态提取变换的滚动轴承故障特征提取方法研究[J]. 机电工程,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004

    PENG Chengcheng. Fault feature extraction method for rolling bearing based on STET[J]. Journal of Mechanical & Electrical Engineering,2021,38(10):1246-1252. doi: 10.3969/j.issn.1001-4551.2021.10.004
    [6] 韩涛,胡英贝,张蕾,等. 信息融合技术在托辊轴承故障诊断中的应用[J]. 轴承,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019

    HAN Tao,HU Yingbei,ZHANG Lei,et al. Application of information fusion technology in fault diagnosis of roller bearings[J]. Bearing,2012(6):57-59. doi: 10.19533/j.issn1000-3762.2012.06.019
    [7] SONG Liuyang,WANG Huaqing,CHEN Peng. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(8):1887-1899. doi: 10.1109/TIM.2018.2806984
    [8] JIANG Xiaopeng, CAO Guangqing. Belt conveyor roller fault audio detection based on the wavelet neural network[EB/OL]. [2022-05-16]. https://ieeexplore. ieee.org/document/73781202015.
    [9] 曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035

    CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86. doi: 10.13272/j.issn.1671-251x.2018100035
    [10] 陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004

    CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603. doi: 10.3969/j.issn.1001-4551.2022.05.004
    [11] YU Dejie,CHENG Junsheng,YANG Yu. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing,2005,19(2):259-270. doi: 10.1016/S0888-3270(03)00099-2
    [12] 蒋留兵,韦洪浪,管四海,等. 基于EEMD和HOC 的超宽带雷达生命探测算法研究[J]. 现代雷达,2015,37(5):25-30.

    JIANG Liubing,WEI Honglang,GUAN Sihai,et al. A study on UWB vital signal detection method based on EEMD and HOC[J]. Modern Radar,2015,37(5):25-30.
    [13] LEI Yaguo,HE Zhengjia,ZI Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications,2011,38(6):7334-7341. doi: 10.1016/j.eswa.2010.12.095
    [14] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2013,62(3):531-544.
    [15] 凌标灿,杨佳滨. 电机滚动轴承故障诊断中BP与RBF神经网络的比较[J]. 华北科技学院学报,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010

    LING Biaocan,YANG Jiabin. Comparison of BP and RBF neural networks in fault diagnosis of motor rolling bearings[J]. Journal of North China Institute of Science and Technology,2018,15(6):53-57. doi: 10.3969/j.issn.1672-7169.2018.06.010
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  73
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-08
  • 网络出版日期:  2022-09-01

目录

    /

    返回文章
    返回