留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锚杆钻车钻臂定位控制方法

李力恒 宋建成 田慕琴 王相元

李力恒,宋建成,田慕琴,等. 锚杆钻车钻臂定位控制方法[J]. 工矿自动化,2023,49(3):77-84, 123.  doi: 10.13272/j.issn.1671-251x.2022070052
引用本文: 李力恒,宋建成,田慕琴,等. 锚杆钻车钻臂定位控制方法[J]. 工矿自动化,2023,49(3):77-84, 123.  doi: 10.13272/j.issn.1671-251x.2022070052
LI Liheng, SONG Jiancheng, TIAN Muqin, et al. Positioning control method for drilling arm of bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):77-84, 123.  doi: 10.13272/j.issn.1671-251x.2022070052
Citation: LI Liheng, SONG Jiancheng, TIAN Muqin, et al. Positioning control method for drilling arm of bolt drilling rig[J]. Journal of Mine Automation,2023,49(3):77-84, 123.  doi: 10.13272/j.issn.1671-251x.2022070052

锚杆钻车钻臂定位控制方法

doi: 10.13272/j.issn.1671-251x.2022070052
基金项目: 山西省科技重大专项计划“揭榜挂帅”项目(202101020101021)。
详细信息
    作者简介:

    李力恒(1995—),男,陕西西安人,硕士研究生,研究方向为矿用智能电器技术,E-mail:liliheng2022@163.com

  • 中图分类号: TD421

Positioning control method for drilling arm of bolt drilling rig

  • 摘要: 目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的机械臂定位控制整体寻优效率较低,寻优时间过长。针对上述问题,在精英反向粒子群优化(EOPSO)算法基础上,引入混沌初始化、交叉操作、变异操作和极值扰动,设计了混沌交叉精英变异反向粒子群优化(CEMOPSO)算法。采用标准测试函数对PSO算法、EOPSO算法、交叉精英反向粒子群优化(CEOPSO)算法、CEMOPSO算法进行测试,结果表明CEMOPSO算法的稳定性、精度、收敛速度最优。建立了锚杆钻车钻臂运动模型,采用CEMOPSO算法进行钻臂定位控制,并在Matlab软件中对控制性能进行仿真研究,结果表明:在相同的迭代次数和误差精度约束条件下,采用CEMOPSO算法时钻臂位置误差和姿态误差从迭代初期即具有极快的收敛速度,且位置误差和姿态误差均小于其他3种算法,误差曲线较平稳,最大位置误差为0.005 m,最大姿态误差为0.005 rad;设定位置误差为1 mm、姿态误差为0.01 rad时,CEMOPSO算法的平均迭代次数为343,位置误差为0.1 mm、姿态误差为0.001 rad时平均迭代次数为473,在相同的定位精度条件下,CEMOPSO算法的收敛速度和稳定性优于其他3种算法,满足工程应用要求,且求解精度越高,其优越性越突出。

     

  • 图  1  锚杆钻车钻臂结构

    1−大臂摇摆关节;2−大臂俯仰关节;3−大臂伸缩关节;4−推进梁俯仰关节;5−推进梁摆动关节;6−推进梁回转关节;7−锚杆关节;8−推进梁伸缩关节。

    Figure  1.  Drilling arm structure of bolt drilling rig

    图  2  锚杆钻车钻臂坐标系

    Figure  2.  Coordinates of drilling arm of bolt drilling rig

    图  3  基于CEMOPSO算法的锚杆钻车钻臂定位控制流程

    Figure  3.  Positioning control flow of drilling arm of bolt drilling rig based on chaotic crossover elite mutation opposition-based particle swarm optimization(CEMOPSO) algorithm

    图  4  标准测试函数进化曲线

    Figure  4.  Evolution curves of standard test functions

    图  5  锚杆钻车钻臂模型

    Figure  5.  Drilling arm model of bolt drilling rig

    图  6  锚杆钻车钻臂末端工作区域

    Figure  6.  Working area of drilling arm end of bolt drilling rig

    图  7  4种算法对钻臂定位控制的位置误差和姿态误差收敛曲线

    Figure  7.  Convergence curves of position errors and posture errors of drilling arm positioning control by use of four algorithms

    图  8  4种算法对钻臂定位控制的位置误差和姿态误差曲线

    Figure  8.  Position error and posture error curves of drilling arm positioning control by use of four algorithms

    图  9  4种算法在不同精度条件下的迭代次数

    Figure  9.  Iteration times of four algorithms under different precision conditions

    表  1  锚杆钻车钻臂D−H参数

    Table  1.   D-H parameters of drilling arm of bolt drilling rig

    关节$ {\theta _j}/(^\circ ) $$ {\alpha _j}/(^\circ ) $$ {a_j}/{\rm{m}} $$ {d_j}/{\rm{m}} $
    1[45,135]900.300
    2[−150,−60]−9000
    3180−900[0,1.8]
    4[−120,−30]−900.350
    5[−135,−45]9000
    6[−270,90]−900.600.4
    7[−90,0]9000.8
    890−900[0,2.5]
    下载: 导出CSV

    表  2  标准测试函数

    Table  2.   Standard test functions

    函数维度搜索范围最优解
    ${f}_{1}(g)\text{=}{\displaystyle \sum _{r=1}^{n}{g}_{r}^{2} }$30[−100,100]0
    ${f_2}(g) =\displaystyle \sum\limits_{r = 1}^n {\left| { {g_r} } \right|} + \prod\limits_{r = 1}^n {\left| { {g_r} } \right|}$30[−10,10]0
    ${f_3}(g) = \displaystyle \sum\limits_{r = 1}^n {(\sum\limits_{q = 1}^n { {g_q}{)^2} } }$30[−100,100]0
    $\mathop f\nolimits_4 (g) = \max \{ \left| {\mathop g\nolimits_r } \right|,1 \leqslant r \leqslant n\}$30[−100,100]0
    下载: 导出CSV

    表  3  标准测试函数计算结果

    Table  3.   Calculation results of standard test functions

    函数PSO算法EOPSO算法CEOPSO算法CEMOPSO算法
    $ {f_1}(g) $标准差:$3.223\; 2 \times {10^{ { { - } }2} }$标准差:$ 6.193\;9 \times {10^{{{ - }}2}} $标准差:$2.925\;9 \times {10^{{{ - 6}}}}$标准差:$2.870\;6 \times {10^{{{ - 18}}}}$
    最优解:$ 2.807\;2 \times {10^{{{ - }}2}} $最优解:$ 2.979\;5 \times {10^{{{ - }}2}} $最优解:$1.393\;2 \times {10^{{{ - 6}}}}$最优解:$4.794\;3 \times {10^{{{ - 19}}}}$
    $ {f_2}(g) $标准差:$ 1.001\;8 \times {10^0} $标准差:$ 1.255\;4 \times {10^0} $标准差:$ 7.436\;1 \times {10^{{{ - }}2}} $标准差:$5.045\;2 \times {10^{{{ - 13}}}}$
    最优解:$ 8.349\;6 \times {10^{{{ - }}1}} $最优解:$ 8.012\;2 \times {10^{{{ - }}1}} $最优解:$ 6.558\;2 \times {10^{{{ - }}2}} $最优解:$1.479\;4 \times {10^{{{ - 13}}}}$
    $ {f_3}(g) $标准差:$ 39.100\;3 \times {10^0} $标准差:$ 36.417\;4 \times {10^0} $标准差:$ 34.092\;9 \times {10^0} $标准差:$9.092\;9 \times {10^{{{ - }}2}}$
    最优解:$ 32.092\;9 \times {10^0} $最优解:$ 31.565\;9 \times {10^0} $最优解:$ 32.073\;7 \times {10^0} $最优解:$7.686\;5 \times {10^{{{ - }}2}}$
    $ {f_4}(g) $标准差:$ 1.268\;5 \times {10^0} $标准差:$ 1.820\;8 \times {10^0} $标准差:$ 5.433\;3 \times {10^{{{ - }}1}} $标准差:$1.683\;6 \times {10^{{{ - 3}}}}$
    最优解:$ 1.167\;1 \times {10^0} $最优解:$ 1.035\;9 \times {10^0} $最优解:$ 5.398\;9 \times {10^{{{ - }}1}} $最优解:$1.327\;9 \times {10^{{{ - 3}}}}$
    下载: 导出CSV
  • [1] 李国江,张飞,李露,等. 基于多种群协同进化算法的绳索牵引并联机器人末端位置误差补偿[J]. 机器人,2021,43(1):81-89. doi: 10.13973/j.cnki.robot.200054

    LI Guojiang,ZHANG Fei,LI Lu,et al. Error compensation of end-effector position for the cable-driven parallel robot based on multi-group co-evolutionary algorithm[J]. Robot,2021,43(1):81-89. doi: 10.13973/j.cnki.robot.200054
    [2] 吉阳珍,侯力,罗岚,等. 基于组合优化算法的6R机器人逆运动学求解[J]. 中国机械工程,2021,32(10):1222-1232. doi: 10.3969/j.issn.1004-132X.2021.10.011

    JI Yangzhen,HOU Li,LUO Lan,et al. Solution of inverse kinematics for 6R robots based on combinatorial optimization algorithm[J]. China Mechanical Engineering,2021,32(10):1222-1232. doi: 10.3969/j.issn.1004-132X.2021.10.011
    [3] 史也,梁斌,王学谦,等. 基于量子粒子群优化算法的空间机器人非完整笛卡尔路径规划[J]. 机械工程学报,2011,47(23):65-73. doi: 10.3901/JME.2011.23.065

    SHI Ye,LIANG Bin,WANG Xueqian,et al. Cartesian non-holonomic path planning of space robot based on quantum-behaved particle swarm optimization algorithm[J]. Journal of Mechanical Engineering,2011,47(23):65-73. doi: 10.3901/JME.2011.23.065
    [4] 刘洋. 基于多目标粒子群算法的机器人逆运动学求解方法[J]. 现代计算机,2020(10):13-17. doi: 10.3969/j.issn.1007-1423.2020.10.003

    LIU Yang. Inverse kinematics solution of robot manipulators based on multi-objective particle swarm optimization[J]. Modern Computer,2020(10):13-17. doi: 10.3969/j.issn.1007-1423.2020.10.003
    [5] 郑雪芳,林意. 基于改进萤火虫算法的冗余机器人轨迹规划[J]. 组合机床与自动化加工技术,2019(12):80-84. doi: 10.13462/j.cnki.mmtamt.2019.12.020

    ZHENG Xuefang,LIN Yi. Trajectory planning for redundant robot based on improved glowworm swarm optimization algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2019(12):80-84. doi: 10.13462/j.cnki.mmtamt.2019.12.020
    [6] 樊华羽,詹浩,程诗信,等. 基于α-stable分布的多目标粒子群算法研究及应用[J]. 西北工业大学学报,2019,37(2):232-241. doi: 10.3969/j.issn.1000-2758.2019.02.004

    FAN Huayu,ZHAN Hao,CHENG Shixin,et al. Research and application of multi-objective particle swarm optimization algorithm based on α-stable distribution[J]. Journal of NorthWestern Polytechnical University,2019,37(2):232-241. doi: 10.3969/j.issn.1000-2758.2019.02.004
    [7] 齐飞,平雪良,刘洁,等. 工业机器人误差补偿及冗余参数研究[J]. 机械设计,2017,34(2):17-22. doi: 10.13841/j.cnki.jxsj.2017.02.004

    QI Fei,PING Xueliang,LIU Jie,et al. Error compensation and parameters redundancy research of industrial robot[J]. Journal of Machine Design,2017,34(2):17-22. doi: 10.13841/j.cnki.jxsj.2017.02.004
    [8] 王宪伦,喻洋,王道全,等. 凿岩机器人的建模与运动学分析[J]. 矿山机械,2016,44(1):90-93. doi: 10.16816/j.cnki.ksjx.2016.01.022

    WANG Xianlun,YU Yang,WANG Daoquan,et al. Modeling and kinematics analysis of rock drilling robot[J]. Mining & Processing Equipment,2016,44(1):90-93. doi: 10.16816/j.cnki.ksjx.2016.01.022
    [9] 徐勤宪,郭治富. 锚杆钻车三角钻臂的运动学研究[J]. 煤矿机械,2019,40(6):25-27. doi: 10.13436/j.mkjx.201906008

    XU Qinxian,GUO Zhifu. Kinematics research of triangular drill arm of bolt drilling rig[J]. Coal Mine Machinery,2019,40(6):25-27. doi: 10.13436/j.mkjx.201906008
    [10] 武少华,高岳林. 粒子群算法的改进与比较研究[J]. 合肥工业大学学报(自然科学版),2019,42(2):184-188,194. doi: 10.3969/j.issn.1003-5060.2019.02.008

    WU Shaohua,GAO Yuelin. Improvement and comparison of particle swarm optimization[J]. Journal of Hefei University of Technology(Natural Science),2019,42(2):184-188,194. doi: 10.3969/j.issn.1003-5060.2019.02.008
    [11] 梁樱馨,田浩杉. 基于细菌觅食与粒子群的改进粒子群算法[J]. 电子科技,2017,30(4):79-82.

    LIANG Yingxin,TIAN Haoshan. Improved hybrid algorithm based on bacterial foraging and particle swarm optimization[J]. Electronic Science and Technology,2017,30(4):79-82.
    [12] 潘勇,郭晓东. 一种基于遗传算法改进的粒子群优化算法[J]. 计算机应用与软件,2011,28(9):222-224. doi: 10.3969/j.issn.1000-386X.2011.09.067

    PAN Yong,GUO Xiaodong. An improved particle swarm optimization algorithm based on genetic algorithm[J]. Computer Applications and Software,2011,28(9):222-224. doi: 10.3969/j.issn.1000-386X.2011.09.067
    [13] 张晓莉,王秦飞,冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机,2019,36(3):66-70. doi: 10.19304/j.cnki.issn1000-7180.2019.03.014

    ZHANG Xiaoli,WANG Qinfei,JI Wenli. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics & Computer,2019,36(3):66-70. doi: 10.19304/j.cnki.issn1000-7180.2019.03.014
    [14] SEKIGUCHI S, KIKUUWE, R. A stable algorithm for unsolvable inverse kinematics of a class of six-DoF manipulators[C]. IEEE/SICE International Symposium on System Integration, Honolulu, 2020: 1521-1529.
    [15] 黄开启,魏文彬,陈荣华,等. 凿岩机器人钻臂定位误差补偿控制交叉精英反向粒子群优化算法[J]. 机械科学与技术,2018,37(7):1005-1012. doi: 10.13433/j.cnki.1003-8728.2018.0702

    HUANG Kaiqi,WEI Wenbin,CHEN Ronghua,et al. CEOPSO algorithm for positioning error compensation control of rock drilling robotic drilling arm[J]. Mechanical Science and Technology for Aerospace Engineering,2018,37(7):1005-1012. doi: 10.13433/j.cnki.1003-8728.2018.0702
    [16] 王涛. 非线性权重和柯西变异的蝗虫算法[J]. 微电子学与计算机,2020,37(5):82-86. doi: 10.19304/j.cnki.issn1000-7180.2020.05.016

    WANG Tao. Grasshopper optimization algorithm with nonlinear weight and cauchy mutation[J]. Microelectronics & Computer,2020,37(5):82-86. doi: 10.19304/j.cnki.issn1000-7180.2020.05.016
    [17] 康岚兰,董文永,田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学,2015,42(10):226-231.

    KANG Lanlan,DONG Wenyong,TIAN Jiangsen. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer Science,2015,42(10):226-231.
    [18] 于建芳,刘升,韩斐斐,等. 基于柯西变异的蚁狮优化算法[J]. 微电子学与计算机,2019,36(6):45-49,54. doi: 10.19304/j.cnki.issn1000-7180.2019.06.010

    YU Jianfang,LIU Sheng,HAN Feifei,et al. Ant lion optimization algorithm based on Cauchy variation[J]. Microelectronics & Computer,2019,36(6):45-49,54. doi: 10.19304/j.cnki.issn1000-7180.2019.06.010
    [19] 徐浩天,季伟东,孙小晴,等. 基于正态分布衰减惯性权重的粒子群优化算法[J]. 深圳大学学报(理工版),2020,37(2):208-213. doi: 10.3724/SP.J.1249.2020.02208

    XU Haotian,JI Weidong,SUN Xiaoqing,et al. A PSO algorithm with inertia weight decay by normal distribution[J]. Journal of Shenzhen University(Science and Engineering),2020,37(2):208-213. doi: 10.3724/SP.J.1249.2020.02208
    [20] 李俊,汪冲,李波,等. 基于多策略协同作用的粒子群优化算法[J]. 计算机应用,2016,36(3):681-686. doi: 10.11772/j.issn.1001-9081.2016.03.681

    LI Jun,WANG Chong,LI Bo,et al. Particle swarm optimization algorithm based on multi-strategy synergy[J]. Journal of Computer Applications,2016,36(3):681-686. doi: 10.11772/j.issn.1001-9081.2016.03.681
    [21] 韩玉辉. 液压凿岩台车自动定位钻孔关键技术研究[D]. 徐州: 中国矿业大学, 2019.

    HAN Yuhui. Research on key technologies of automatic location drilling for rock drilling jumbo[D]. Xuzhou: China University of Mining and Technology, 2019.
    [22] 冯帆. 红外视觉定位的机械臂控制算法研究与实现[D]. 西安: 西安工业大学, 2019.

    FENG Fan. Research and implementation of manipulator control algorithm for infrared vision positioning[D]. Xi'an: Xi'an Technological University, 2019.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  55
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2023-03-01
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回