Positioning control method for drilling arm of bolt drilling rig
-
摘要: 目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的机械臂定位控制整体寻优效率较低,寻优时间过长。针对上述问题,在精英反向粒子群优化(EOPSO)算法基础上,引入混沌初始化、交叉操作、变异操作和极值扰动,设计了混沌交叉精英变异反向粒子群优化(CEMOPSO)算法。采用标准测试函数对PSO算法、EOPSO算法、交叉精英反向粒子群优化(CEOPSO)算法、CEMOPSO算法进行测试,结果表明CEMOPSO算法的稳定性、精度、收敛速度最优。建立了锚杆钻车钻臂运动模型,采用CEMOPSO算法进行钻臂定位控制,并在Matlab软件中对控制性能进行仿真研究,结果表明:在相同的迭代次数和误差精度约束条件下,采用CEMOPSO算法时钻臂位置误差和姿态误差从迭代初期即具有极快的收敛速度,且位置误差和姿态误差均小于其他3种算法,误差曲线较平稳,最大位置误差为0.005 m,最大姿态误差为0.005 rad;设定位置误差为1 mm、姿态误差为0.01 rad时,CEMOPSO算法的平均迭代次数为343,位置误差为0.1 mm、姿态误差为0.001 rad时平均迭代次数为473,在相同的定位精度条件下,CEMOPSO算法的收敛速度和稳定性优于其他3种算法,满足工程应用要求,且求解精度越高,其优越性越突出。Abstract: Algebraic and geometric methods are commonly used to realize drilling arm positioning control of bolt drilling rig. However, there are some problems such as low efficiency, no solution, multiple solutions, or poor universality. Using particle swarm optimization (POS) algorithm for positioning control of the drilling arm has the advantages of simple programming, strong search performance and good fault tolerance. But it is easy to fall into the local optimal solution. At present, the drilling arm positioning control based on improved PSO algorithm has low overall optimization efficiency and long optimization time. In order to solve the above problems, a chaotic crossover elite mutation opposition-based PSO (CEMOPSO) algorithm is designed by introducing chaos initialization, crossover operation, mutation operation and extreme value perturbation based on elite opposition-based PSO (EOPOS) algorithm. The method uses standard test functions to test PSO algorithm, EOPSO algorithm, CEOPSO algorithm and CEMOPSO algorithm. The results show that CEMOPSO has the best stability, precision and convergence speed. The motion model of the drilling arm of the bolt drilling rig is established. The CEMOPSO algorithm is used to control the drilling arm positioning. The simulation of the control performance is carried out in Matlab. The results show that under the same iteration times and error precision constraints, the position error and posture error of the drilling arm have a very fast convergence rate from the initial iteration when using the CEMOPSO algorithm. The position error and posture error are smaller than those of the other three algorithms. The error curve is smooth, and the maximum position error is 0.005 m and the maximum posture error is 0.005 rad. When the position error is 1 mm and the posture error is 0.01 rad, the average iteration number of the CEMOPSO algorithm is 343. When the position error is 0.1 mm and the posture error is 0.001 rad, the average iteration number is 473. Under the same positioning precision, the convergence speed and stability of the CEMOPSO algorithm are better than those of the other three algorithms. The results meet the requirements of engineering application. The higher the accuracy of the solution, the better it is.
-
表 1 锚杆钻车钻臂D−H参数
Table 1. D-H parameters of drilling arm of bolt drilling rig
关节 $ {\theta _j}/(^\circ ) $ $ {\alpha _j}/(^\circ ) $ $ {a_j}/{\rm{m}} $ $ {d_j}/{\rm{m}} $ 1 [45,135] 90 0.30 0 2 [−150,−60] −90 0 0 3 180 −90 0 [0,1.8] 4 [−120,−30] −90 0.35 0 5 [−135,−45] 90 0 0 6 [−270,90] −90 0.60 0.4 7 [−90,0] 90 0 0.8 8 90 −90 0 [0,2.5] 表 2 标准测试函数
Table 2. Standard test functions
函数 维度 搜索范围 最优解 ${f}_{1}(g)\text{=}{\displaystyle \sum _{r=1}^{n}{g}_{r}^{2} }$ 30 [−100,100] 0 ${f_2}(g) =\displaystyle \sum\limits_{r = 1}^n {\left| { {g_r} } \right|} + \prod\limits_{r = 1}^n {\left| { {g_r} } \right|}$ 30 [−10,10] 0 ${f_3}(g) = \displaystyle \sum\limits_{r = 1}^n {(\sum\limits_{q = 1}^n { {g_q}{)^2} } }$ 30 [−100,100] 0 $\mathop f\nolimits_4 (g) = \max \{ \left| {\mathop g\nolimits_r } \right|,1 \leqslant r \leqslant n\}$ 30 [−100,100] 0 表 3 标准测试函数计算结果
Table 3. Calculation results of standard test functions
函数 PSO算法 EOPSO算法 CEOPSO算法 CEMOPSO算法 $ {f_1}(g) $ 标准差:$3.223\; 2 \times {10^{ { { - } }2} }$ 标准差:$ 6.193\;9 \times {10^{{{ - }}2}} $ 标准差:$2.925\;9 \times {10^{{{ - 6}}}}$ 标准差:$2.870\;6 \times {10^{{{ - 18}}}}$ 最优解:$ 2.807\;2 \times {10^{{{ - }}2}} $ 最优解:$ 2.979\;5 \times {10^{{{ - }}2}} $ 最优解:$1.393\;2 \times {10^{{{ - 6}}}}$ 最优解:$4.794\;3 \times {10^{{{ - 19}}}}$ $ {f_2}(g) $ 标准差:$ 1.001\;8 \times {10^0} $ 标准差:$ 1.255\;4 \times {10^0} $ 标准差:$ 7.436\;1 \times {10^{{{ - }}2}} $ 标准差:$5.045\;2 \times {10^{{{ - 13}}}}$ 最优解:$ 8.349\;6 \times {10^{{{ - }}1}} $ 最优解:$ 8.012\;2 \times {10^{{{ - }}1}} $ 最优解:$ 6.558\;2 \times {10^{{{ - }}2}} $ 最优解:$1.479\;4 \times {10^{{{ - 13}}}}$ $ {f_3}(g) $ 标准差:$ 39.100\;3 \times {10^0} $ 标准差:$ 36.417\;4 \times {10^0} $ 标准差:$ 34.092\;9 \times {10^0} $ 标准差:$9.092\;9 \times {10^{{{ - }}2}}$ 最优解:$ 32.092\;9 \times {10^0} $ 最优解:$ 31.565\;9 \times {10^0} $ 最优解:$ 32.073\;7 \times {10^0} $ 最优解:$7.686\;5 \times {10^{{{ - }}2}}$ $ {f_4}(g) $ 标准差:$ 1.268\;5 \times {10^0} $ 标准差:$ 1.820\;8 \times {10^0} $ 标准差:$ 5.433\;3 \times {10^{{{ - }}1}} $ 标准差:$1.683\;6 \times {10^{{{ - 3}}}}$ 最优解:$ 1.167\;1 \times {10^0} $ 最优解:$ 1.035\;9 \times {10^0} $ 最优解:$ 5.398\;9 \times {10^{{{ - }}1}} $ 最优解:$1.327\;9 \times {10^{{{ - 3}}}}$ -
[1] 李国江,张飞,李露,等. 基于多种群协同进化算法的绳索牵引并联机器人末端位置误差补偿[J]. 机器人,2021,43(1):81-89. doi: 10.13973/j.cnki.robot.200054LI Guojiang,ZHANG Fei,LI Lu,et al. Error compensation of end-effector position for the cable-driven parallel robot based on multi-group co-evolutionary algorithm[J]. Robot,2021,43(1):81-89. doi: 10.13973/j.cnki.robot.200054 [2] 吉阳珍,侯力,罗岚,等. 基于组合优化算法的6R机器人逆运动学求解[J]. 中国机械工程,2021,32(10):1222-1232. doi: 10.3969/j.issn.1004-132X.2021.10.011JI Yangzhen,HOU Li,LUO Lan,et al. Solution of inverse kinematics for 6R robots based on combinatorial optimization algorithm[J]. China Mechanical Engineering,2021,32(10):1222-1232. doi: 10.3969/j.issn.1004-132X.2021.10.011 [3] 史也,梁斌,王学谦,等. 基于量子粒子群优化算法的空间机器人非完整笛卡尔路径规划[J]. 机械工程学报,2011,47(23):65-73. doi: 10.3901/JME.2011.23.065SHI Ye,LIANG Bin,WANG Xueqian,et al. Cartesian non-holonomic path planning of space robot based on quantum-behaved particle swarm optimization algorithm[J]. Journal of Mechanical Engineering,2011,47(23):65-73. doi: 10.3901/JME.2011.23.065 [4] 刘洋. 基于多目标粒子群算法的机器人逆运动学求解方法[J]. 现代计算机,2020(10):13-17. doi: 10.3969/j.issn.1007-1423.2020.10.003LIU Yang. Inverse kinematics solution of robot manipulators based on multi-objective particle swarm optimization[J]. Modern Computer,2020(10):13-17. doi: 10.3969/j.issn.1007-1423.2020.10.003 [5] 郑雪芳,林意. 基于改进萤火虫算法的冗余机器人轨迹规划[J]. 组合机床与自动化加工技术,2019(12):80-84. doi: 10.13462/j.cnki.mmtamt.2019.12.020ZHENG Xuefang,LIN Yi. Trajectory planning for redundant robot based on improved glowworm swarm optimization algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique,2019(12):80-84. doi: 10.13462/j.cnki.mmtamt.2019.12.020 [6] 樊华羽,詹浩,程诗信,等. 基于α-stable分布的多目标粒子群算法研究及应用[J]. 西北工业大学学报,2019,37(2):232-241. doi: 10.3969/j.issn.1000-2758.2019.02.004FAN Huayu,ZHAN Hao,CHENG Shixin,et al. Research and application of multi-objective particle swarm optimization algorithm based on α-stable distribution[J]. Journal of NorthWestern Polytechnical University,2019,37(2):232-241. doi: 10.3969/j.issn.1000-2758.2019.02.004 [7] 齐飞,平雪良,刘洁,等. 工业机器人误差补偿及冗余参数研究[J]. 机械设计,2017,34(2):17-22. doi: 10.13841/j.cnki.jxsj.2017.02.004QI Fei,PING Xueliang,LIU Jie,et al. Error compensation and parameters redundancy research of industrial robot[J]. Journal of Machine Design,2017,34(2):17-22. doi: 10.13841/j.cnki.jxsj.2017.02.004 [8] 王宪伦,喻洋,王道全,等. 凿岩机器人的建模与运动学分析[J]. 矿山机械,2016,44(1):90-93. doi: 10.16816/j.cnki.ksjx.2016.01.022WANG Xianlun,YU Yang,WANG Daoquan,et al. Modeling and kinematics analysis of rock drilling robot[J]. Mining & Processing Equipment,2016,44(1):90-93. doi: 10.16816/j.cnki.ksjx.2016.01.022 [9] 徐勤宪,郭治富. 锚杆钻车三角钻臂的运动学研究[J]. 煤矿机械,2019,40(6):25-27. doi: 10.13436/j.mkjx.201906008XU Qinxian,GUO Zhifu. Kinematics research of triangular drill arm of bolt drilling rig[J]. Coal Mine Machinery,2019,40(6):25-27. doi: 10.13436/j.mkjx.201906008 [10] 武少华,高岳林. 粒子群算法的改进与比较研究[J]. 合肥工业大学学报(自然科学版),2019,42(2):184-188,194. doi: 10.3969/j.issn.1003-5060.2019.02.008WU Shaohua,GAO Yuelin. Improvement and comparison of particle swarm optimization[J]. Journal of Hefei University of Technology(Natural Science),2019,42(2):184-188,194. doi: 10.3969/j.issn.1003-5060.2019.02.008 [11] 梁樱馨,田浩杉. 基于细菌觅食与粒子群的改进粒子群算法[J]. 电子科技,2017,30(4):79-82.LIANG Yingxin,TIAN Haoshan. Improved hybrid algorithm based on bacterial foraging and particle swarm optimization[J]. Electronic Science and Technology,2017,30(4):79-82. [12] 潘勇,郭晓东. 一种基于遗传算法改进的粒子群优化算法[J]. 计算机应用与软件,2011,28(9):222-224. doi: 10.3969/j.issn.1000-386X.2011.09.067PAN Yong,GUO Xiaodong. An improved particle swarm optimization algorithm based on genetic algorithm[J]. Computer Applications and Software,2011,28(9):222-224. doi: 10.3969/j.issn.1000-386X.2011.09.067 [13] 张晓莉,王秦飞,冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机,2019,36(3):66-70. doi: 10.19304/j.cnki.issn1000-7180.2019.03.014ZHANG Xiaoli,WANG Qinfei,JI Wenli. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics & Computer,2019,36(3):66-70. doi: 10.19304/j.cnki.issn1000-7180.2019.03.014 [14] SEKIGUCHI S, KIKUUWE, R. A stable algorithm for unsolvable inverse kinematics of a class of six-DoF manipulators[C]. IEEE/SICE International Symposium on System Integration, Honolulu, 2020: 1521-1529. [15] 黄开启,魏文彬,陈荣华,等. 凿岩机器人钻臂定位误差补偿控制交叉精英反向粒子群优化算法[J]. 机械科学与技术,2018,37(7):1005-1012. doi: 10.13433/j.cnki.1003-8728.2018.0702HUANG Kaiqi,WEI Wenbin,CHEN Ronghua,et al. CEOPSO algorithm for positioning error compensation control of rock drilling robotic drilling arm[J]. Mechanical Science and Technology for Aerospace Engineering,2018,37(7):1005-1012. doi: 10.13433/j.cnki.1003-8728.2018.0702 [16] 王涛. 非线性权重和柯西变异的蝗虫算法[J]. 微电子学与计算机,2020,37(5):82-86. doi: 10.19304/j.cnki.issn1000-7180.2020.05.016WANG Tao. Grasshopper optimization algorithm with nonlinear weight and cauchy mutation[J]. Microelectronics & Computer,2020,37(5):82-86. doi: 10.19304/j.cnki.issn1000-7180.2020.05.016 [17] 康岚兰,董文永,田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学,2015,42(10):226-231.KANG Lanlan,DONG Wenyong,TIAN Jiangsen. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer Science,2015,42(10):226-231. [18] 于建芳,刘升,韩斐斐,等. 基于柯西变异的蚁狮优化算法[J]. 微电子学与计算机,2019,36(6):45-49,54. doi: 10.19304/j.cnki.issn1000-7180.2019.06.010YU Jianfang,LIU Sheng,HAN Feifei,et al. Ant lion optimization algorithm based on Cauchy variation[J]. Microelectronics & Computer,2019,36(6):45-49,54. doi: 10.19304/j.cnki.issn1000-7180.2019.06.010 [19] 徐浩天,季伟东,孙小晴,等. 基于正态分布衰减惯性权重的粒子群优化算法[J]. 深圳大学学报(理工版),2020,37(2):208-213. doi: 10.3724/SP.J.1249.2020.02208XU Haotian,JI Weidong,SUN Xiaoqing,et al. A PSO algorithm with inertia weight decay by normal distribution[J]. Journal of Shenzhen University(Science and Engineering),2020,37(2):208-213. doi: 10.3724/SP.J.1249.2020.02208 [20] 李俊,汪冲,李波,等. 基于多策略协同作用的粒子群优化算法[J]. 计算机应用,2016,36(3):681-686. doi: 10.11772/j.issn.1001-9081.2016.03.681LI Jun,WANG Chong,LI Bo,et al. Particle swarm optimization algorithm based on multi-strategy synergy[J]. Journal of Computer Applications,2016,36(3):681-686. doi: 10.11772/j.issn.1001-9081.2016.03.681 [21] 韩玉辉. 液压凿岩台车自动定位钻孔关键技术研究[D]. 徐州: 中国矿业大学, 2019.HAN Yuhui. Research on key technologies of automatic location drilling for rock drilling jumbo[D]. Xuzhou: China University of Mining and Technology, 2019. [22] 冯帆. 红外视觉定位的机械臂控制算法研究与实现[D]. 西安: 西安工业大学, 2019.FENG Fan. Research and implementation of manipulator control algorithm for infrared vision positioning[D]. Xi'an: Xi'an Technological University, 2019.