Research on the application of 5G characteristics in intelligent mine
-
摘要: 目前智慧矿山5G建设主要针对矿用5G的宏观技术发展方向、测试方法和特定应用场景展开研究,缺乏对智慧矿山5G各类应用场景特点的全面梳理。针对该问题,归纳了智慧矿山5G应用场景类型,梳理了主要应用场景的通信需求,指出传感器信息回传类应用具有广覆盖需求、视频信息采集和回传类应用具有上行大带宽传输需求、实时控制信息交互类应用具有下行低时延传输需求、自动驾驶信息采集和回传类应用具有上行大带宽和下行低时延共存的差异化传输需求。针对智慧矿山5G应用的环境特点和技术要求,提出了核心网+承载网+接入网的矿用5G网络总体架构:① 核心网通过用户平面功能(UPF)和多接入边缘计算(MEC)下沉,实现矿山5G独立组网、独立运行。② 承载网中的信息安全模块用于数据安全审计监测和传输控制,实现井上下数据安全隔离;网络切片和服务质量(QoS)管理模块用于对不同业务进行信道划分和隔离,实现多业务共存信道隔离,保障传输性能。③ 接入网采用基站控制器+基站汇集器+基站+终端的方式,实现5G信号分区、按需覆盖。根据上述架构,提出了面向智慧矿山多样化应用需求的5G关键技术方案:① 采用网络切片技术将矿山5G网络划分为传感器切片、视频回传类切片、实时控制类切片、远程控制类切片,结合传输业务的QoS指标,将业务数据映射到不同的切片资源上进行传输,实现5G网络传输的按需分配。② 通过灵活空中接口调度机制满足无线资源按需调度,即大带宽业务采用资源请求−业务缓存报告资源分配−业务缓存−数据传输资源分配的空口资源调度方式,保障上行传输带宽,低时延业务采用预留的专用空口资源进行传输,保证下行传输低时延。③ 当单一频段无法满足上行传输需求时,通过载波聚合技术将多个连续或非连续的载波聚合成更大的带宽,有效支撑矿山5G的大带宽传输需求。Abstract: At present, the 5G construction in intelligent mine mainly focuses on the macro technology development direction, test methods and specific application scenarios of mine 5G. There is a lack of comprehensive analysis of the characteristics of various 5G application scenarios of intelligent mine. In order to solve this problem, the types of 5G application scenarios of intelligent mines are summarized. The communication requirements of the main application scenarios are sorted out. It is pointed out that sensor information backhaul applications have wide coverage requirements. The video information collection and backhaul applications have uplink large bandwidth transmission requirements. The real-time control information interaction applications have downlink low-delay transmission requirements. The automatic driving information collection and backhaul applications need to meet the differentiated transmission requirements of uplink large bandwidth and downlink low delay. According to the environmental characteristics and technical requirements of 5G application in intelligent mines, the overall architecture of mine 5G network with core network + bearer network + access network is proposed. ① The core network makes user plane function (UPF) and multi-access edge computing (MEC) sinking into the mine area to realize independent networking and independent operation of mine 5G. ② The information security module in the smart transport network is used for data security audit monitoring and transmission control to achieve safe isolation of surface and underground data. The network slicing and quality of service (QoS) management module is used to divide and isolate channels for different services, as to realize channel isolation for the coexistence of multiple services and transmission performance guarantee. ③ The access network adopts the mode of base station controller + base station collector + base station + terminal to realize 5G signal partition and on-demand coverage. According to the above architecture, the key technical scheme of 5G for diversified application requirements of intelligent mine is proposed. ① The network slicing technology is used to divide the mine 5G network into sensor slices, video return slices, real-time control slices and remote control slices. Combined with QoS indexes of transmission services, the service data is mapped to different slice resources for transmission,so as to realize the on-demand distribution of 5G network transmission. ② The flexible air interface scheduling mechanism is used to meet the on-demand scheduling of wireless resources. The air interface resource scheduling mode of "resource request-service buffer report resource allocation-service buffer-data transmission resource allocation" is adopted for large-bandwidth services. The mode is used to ensure the uplink transmission bandwidth. The reserved dedicated air interface resources are adopted for low-delay services to ensure the low delay of downlink transmission. ③ When a single frequency band cannot meet the uplink transmission requirement, multiple continuous or discontinuous carriers are aggregated into a larger bandwidth through carrier aggregation technology, effectively supporting the large bandwidth transmission requirement of mine 5G.
-
Key words:
- intelligent mine /
- mine 5G /
- network slice /
- large uplink bandwidth /
- downlink low delay /
- QoS /
- on-demand coverage /
- carrier aggregation
-
表 1 矿用5G关键技术与承载应用的关系
Table 1. Relationship between key technologies and carrying application of mine 5G
关键技术 传感器类
应用视频类
应用实时控制类
应用自动驾驶类
应用网络切片及
QoS机制支撑技术 支撑技术 支撑技术 支撑技术 灵活空口资源
调度机制基于配置预
留资源承载基于请求调
度方式承载基于配置预
留资源承载基于请求调
度方式承载载波聚合 − 支撑技术 − − 表 2 载波聚合频段上行主要配置参数
Table 2. Main uplink configuration parameters of the carrier aggregation frequency band
参数 2.1 GHz 3.5 GHz 信道带宽/MHz 20 50 100 时隙配置 FDD FDD 23∶45(按需配置) 基站噪声系数/dB 2.5 2.5 3.5 上行干扰余量/dB 3 3 2 穿透损耗/dB 20 20 23.4 边缘覆盖率/% 75 75 75 传播模型 3GPP UMa 3GPP UMa 3GPP UMa 表 3 载波聚合频段下行主要配置参数
Table 3. Main downlink configuration parameters of the carrier aggregation frequency band
参数 2.1 GHz 3.5 GHz 信道带宽/MHz 20 50 100 时隙配置 FDD FDD 23∶45(按需配置) 终端噪声系数/dB 7 7 7 终端接收增益 0 0 3 下行干扰余量/dB 7 5 5 穿透损耗/dB 20 20 23.4 边缘覆盖率/% 75 75 75 传播模型 3GPP UMa 3GPP UMa 3GPP UMa -
[1] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. [2] 郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33.ZHENG Xiaolei,LIANG Hong. Safety technical requiremments and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. [3] 张立亚. 基于5G通信的矿山可视化智能监控技术[J]. 煤炭技术,2022,41(1):191-194. doi: 10.13301/j.cnki.ct.2022.01.045ZHANG Liya. Mine visual intelligent monitoring technology based on 5G communication[J]. Coal Technology,2022,41(1):191-194. doi: 10.13301/j.cnki.ct.2022.01.045 [4] 刘雨燕,宋燕. 新一代信息技术助力智慧矿山建设[J]. 煤炭技术,2021,40(2):184-186.LIU Yuyan,SONG Yan. New-generation information technology helps construction of smart mines[J]. Coal Technology,2021,40(2):184-186. [5] 顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68. doi: 10.13272/j.issn.1671-251x.17919GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68. doi: 10.13272/j.issn.1671-251x.17919 [6] 王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909-1924.WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909-1924. [7] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176.ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. [8] 张蓄金,乌岚. 多传感器信息融合技术在煤自燃安全预警系统中的应用[J]. 煤炭技术,2022,41(6):156-158. doi: 10.13301/j.cnki.ct.2022.06.037ZHANG Xujin,WU Lan. Application of multi-sensor information fusion technology in coal spontaneous combustion safety early warning system[J]. Coal Technology,2022,41(6):156-158. doi: 10.13301/j.cnki.ct.2022.06.037 [9] 胡亚辉,赵国瑞,吴群英. 面向煤矿智能化的5G关键技术研究[J]. 煤炭科学技术,2022,50(2):223-230. doi: 10.13199/j.cnki.cst.2020-1093HU Yahui,ZHAO Guorui,WU Qunying. Research on 5G key technologies in intelligent coal mining[J]. Coal Science and Technology,2022,50(2):223-230. doi: 10.13199/j.cnki.cst.2020-1093 [10] 冯登国,徐静,兰晓. 5G移动通信网络安全研究[J]. 软件学报,2018,29(6):1813-1825.FENG Dengguo,XU Jing,LAN Xiao. Study on 5G mobile communication network security[J]. Journal of Software,2018,29(6):1813-1825. [11] 张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全,2021,52(2):165-168. doi: 10.13347/j.cnki.mkaq.2021.02.032ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines,2021,52(2):165-168. doi: 10.13347/j.cnki.mkaq.2021.02.032 [12] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. doi: 10.13225/j.cnki.jccs.YG19.1515WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23. doi: 10.13225/j.cnki.jccs.YG19.1515 [13] 霍振龙,肖松,孟玮,等. 矿井5G无线通信系统关键技术及装备研发与示范应用[J]. 智能矿山,2022,3(4):55-60.HUO Zhenlong,XIAO Song,MENG Wei,et al. Key echnology research,equipment development and demonstration application of mine 5G wireless communication system[J]. Journal of Intelligent Mine,2022,3(4):55-60. [14] 葛世荣,胡而已,裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报,2020,45(1):455-463. doi: 10.13225/j.cnki.jccs.YG19.1478GE Shirong,HU Eryi,PEI Wenliang. Classification system and key technology of coal mine robot[J]. Journal of China Coal Society,2020,45(1):455-463. doi: 10.13225/j.cnki.jccs.YG19.1478 [15] 李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55. doi: 10.13272/j.issn.1671-251x.17930LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. doi: 10.13272/j.issn.1671-251x.17930 [16] 赵远,吉庆,王腾. 煤矿智能无轨辅助运输技术现状与展望[J]. 煤炭科学技术,2021,49(12):209-216. doi: 10.13199/j.cnki.cst.2021.12.026ZHAO Yuan,JI Qing,WANG Teng. Current status and prospects of intelligent trackless auxiliary transportation technology in coal mines[J]. Coal Science and Technology,2021,49(12):209-216. doi: 10.13199/j.cnki.cst.2021.12.026