留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低位巷瓦斯抽采条件下采空区遗煤自燃规律研究

范加锋

范加锋. 低位巷瓦斯抽采条件下采空区遗煤自燃规律研究[J]. 工矿自动化,2023,49(2):102-108, 124.  doi: 10.13272/j.issn.1671-251x.2022070031
引用本文: 范加锋. 低位巷瓦斯抽采条件下采空区遗煤自燃规律研究[J]. 工矿自动化,2023,49(2):102-108, 124.  doi: 10.13272/j.issn.1671-251x.2022070031
FAN Jiafeng. Study on spontaneous combustion law of residual coal in goaf under the condition of gas extraction in the low-level roadway[J]. Journal of Mine Automation,2023,49(2):102-108, 124.  doi: 10.13272/j.issn.1671-251x.2022070031
Citation: FAN Jiafeng. Study on spontaneous combustion law of residual coal in goaf under the condition of gas extraction in the low-level roadway[J]. Journal of Mine Automation,2023,49(2):102-108, 124.  doi: 10.13272/j.issn.1671-251x.2022070031

低位巷瓦斯抽采条件下采空区遗煤自燃规律研究

doi: 10.13272/j.issn.1671-251x.2022070031
基金项目: 辽宁省社发攻关及产业化指导计划项目(2019JH8/10300099)。
详细信息
    作者简介:

    范加锋(1989—),男,山东德州人,助理研究员,研究方向为煤自燃防治与瓦斯抽采,E-mail: symkyfjf@163.com

  • 中图分类号: TD712

Study on spontaneous combustion law of residual coal in goaf under the condition of gas extraction in the low-level roadway

  • 摘要: 煤层顶板布置低位巷抽采瓦斯是解决工作面上隅角瓦斯超限问题的重要技术措施,但低位巷大流量混合抽采造成采空区漏风严重,增加遗煤自燃风险。目前针对低位巷布置与抽采流量协同影响采空区遗煤自燃方面的研究较少。针对贾家沟煤矿10106工作面布置低位巷抽采采空区瓦斯的实际情况,采用COMSOL软件建立了非均质采空区三维流−固−热多场耦合数值模型,通过数值模拟分析了低位巷抽采瓦斯诱导采空区遗煤自燃规律,结果表明:低位巷瓦斯抽采能够降低工作面上隅角瓦斯浓度;瓦斯抽采流量与自燃氧化带最大宽度、采空区最高温度呈正比,抽采流量增加,则自燃氧化带最大宽度和采空区最高温度增加,但过高的抽采压力导致上隅角附近空气“回流”至采空区,增加采空区遗煤自燃风险;当低位巷瓦斯抽采流量一定时,内错距越小,则采空区自燃氧化带最大宽度和最高温度越大。结合数值模拟结果与工程实践,确定贾家沟煤矿低位巷内错距为15 m,瓦斯抽采流量为45 m3/min,此时上隅角瓦斯体积分数为0.875%,采空区自燃氧化带最大宽度为59.14 m,有效解决了上隅角瓦斯浓度超限问题,且未显著增大采空区遗煤自燃危险区域。

     

  • 图  1  采空区瓦斯与煤自燃多场耦合关系

    Figure  1.  Multi fields coupling relationship between gas in goaf and coal spontaneous combustion

    图  2  10106工作面采空区三维模型

    Figure  2.  3D model of goaf in 10106 working face

    图  3  未抽采条件下采空区渗流特性

    Figure  3.  Seepage flow characteristic in goaf without gas drainage

    图  4  未抽采条件下采空区自燃氧化带分布

    Figure  4.  Distribution of spontaneous combustion oxidation zone in goaf without gas drainage

    图  5  低位巷瓦斯抽采条件下采空区渗流特性

    Figure  5.  Seepage flow characteristic in goaf under gas drainage in low-level gateway

    图  6  不同内错距条件下上隅角瓦斯浓度与抽采流量的关系

    Figure  6.  Relationship between gas concentration in upper corner and drainage amount under different dislocation distances

    图  7  不同抽采流量条件下采空区自燃氧化带分布(L=15 m)

    Figure  7.  Distributions of spontaneous combustion oxidation zone in goaf at different drainage amounts(L=15 m)

    图  8  不同内错距条件下采空区自燃氧化带分布(Q=45 m3/min)

    Figure  8.  Distributions of spontaneous combustion oxidation zone in goaf under different dislocation distances(Q=45 m3/min)

    图  9  不同内错距条件下自燃氧化带最大宽度与抽采流量的关系

    Figure  9.  Relationship between the maximum width of spontaneous combustion oxidation zone and drainage amount under different dislocation distances

    图  10  不同内错距条件下采空区最高温度与抽采流量的关系

    Figure  10.  Relationship between the maximum temperature and drainage amount under different dislocation distances

  • [1] YANG Shengqiang,ZHOU Buzhuang,WANG Chaojie. Investigation on coal spontaneous combustion in the gob of Y type ventilation caving face:A case study[J]. Process Safety and Environmental Protection,2021,148(2):590-603.
    [2] 周冬,刘贞堂,钱继发,等. 采空区内煤自燃气体特征及产生规律分析[J]. 工矿自动化,2019,45(3):18-22. doi: 10.13272/j.issn.1671-251x.2018090037

    ZHOU Dong,LIU Zhentang,QIAN Jifa,et al. Analysis of gas characteristics and generation rules of coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2019,45(3):18-22. doi: 10.13272/j.issn.1671-251x.2018090037
    [3] 邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125. doi: 10.13347/j.cnki.mkaq.2020.10.018

    DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control Technology[J]. Safety in Coal Mines,2020,51(10):118-125. doi: 10.13347/j.cnki.mkaq.2020.10.018
    [4] 邢震. 高瓦斯矿井采空区瓦斯与煤自燃耦合规律研究[J]. 工矿自动化,2020,46(3):6-11. doi: 10.13272/j.issn.1671-251x.2019010084

    XING Zhen. Research on coupling law of gas and coal spontaneous combustion in goaf of high gas mine[J]. Industry and Mine Automation,2020,46(3):6-11. doi: 10.13272/j.issn.1671-251x.2019010084
    [5] 王德明,邵振鲁,朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报,2021,46(1):57-64.

    WANG Deming,SHAO Zhenlu,ZHU Yunfei. Several scientific issues on major thermodynamic disasters in coal mines[J]. Journal of China Coal Society,2021,46(1):57-64.
    [6] XU Yu,LI Zijun,ZHAI Xiaowei,et al. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob[J]. Journal of Cleaner Production,2020,273(11):122925.
    [7] CHU Tingxiang,LI Pin,CHEN Yuexia. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel[J]. International Journal of Mining Science and Technology,2019,29(3):491-498. doi: 10.1016/j.ijmst.2018.05.002
    [8] 王继仁,张英,黄戈,等. 采空区不同瓦斯抽采方法与自燃合理平衡的数值模拟[J]. 中国安全生产科学技术,2015,11(8):26-32.

    WANG Jiren,ZHANG Ying,HUANG Ge,et al. Numerical simulation on reasonable balance between different gas drainage methods and spontaneous combustion in gob area[J]. Journal of Safety Science and Technology,2015,11(8):26-32.
    [9] 贾廷贵,李颜兵,曲国娜. 偏Y形通风工作面上隅角瓦斯抽采模拟[J]. 安全与环境学报,2021,21(6):2472-2478. doi: 10.13637/j.issn.1009-6094.2020.0624

    JIA Tinggui,LI Yanbing,QU Guona. Simulated research on the gas drainage in the upper corner of the working face with partial Y type ventilation[J]. Journal of Safety and Environment,2021,21(6):2472-2478. doi: 10.13637/j.issn.1009-6094.2020.0624
    [10] 杜阳,翁旭泽,戚绪尧,等. 远距离抽采条件下采空区煤自燃区域分布规律[J]. 煤矿安全,2020,51(1):196-199. doi: 10.13347/j.cnki.mkaq.2020.01.044

    DU Yang,WENG Xuze,QI Xuyao,et al. Distribution law of spontaneous combustion danger zone of coal in goaf under long distance extraction[J]. Safety in Coal Mines,2020,51(1):196-199. doi: 10.13347/j.cnki.mkaq.2020.01.044
    [11] 裴晓东,张人伟,马伟南. 高瓦斯易自燃采空区瓦斯与煤自燃耦合模拟研究[J]. 煤炭科学技术,2016,44(4):73-77. doi: 10.13199/j.cnki.cst.2016.04.015

    PEI Xiaodong,ZHANG Renwei,MA Weinan. Study on coupling simulation of gas and coal spontaneous combustion in high gassy and easy spontaneous combustion goaf[J]. Coal Science and Technology,2016,44(4):73-77. doi: 10.13199/j.cnki.cst.2016.04.015
    [12] 王飞,谷晓玲. 综放工作面采空区抽放注氮与遗煤自燃三耦合关系研究[J]. 煤炭技术,2021,40(2):145-147. doi: 10.13301/j.cnki.ct.2021.02.040

    WANG Fei,GU Xiaoling. Study on coupling relationship between nitrogen injection and coal spontaneous combustion in goaf of fully mechanized top coal caving face[J]. Coal Technology,2021,40(2):145-147. doi: 10.13301/j.cnki.ct.2021.02.040
    [13] 文虎,王文,程小蛟,等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保,2020,47(6):1-7. doi: 10.19835/j.issn.1008-4495.2020.06.001

    WEN Hu,WANG Wen,CHENG Xiaojiao,et al. Study on the effect of different extraction conditions on "three zones" of coal spontaneous combustion in goaf[J]. Mining Safety & Environmental Protection,2020,47(6):1-7. doi: 10.19835/j.issn.1008-4495.2020.06.001
    [14] WANG Chaojie,YANG Shengqiang,LI Xiaowei. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob[J]. Process Safety and Environmental Protection,2018,118:296-306. doi: 10.1016/j.psep.2018.06.028
    [15] 杜瀚林,于贵生. 高瓦斯易自燃煤层高抽巷瓦斯抽采与浮煤自燃耦合研究[J]. 煤矿安全,2019,50(12):163-169. doi: 10.13347/j.cnki.mkaq.2019.12.037

    DU Hanlin,YU Guisheng. Study on coupling of gas drainage and floating coal spontaneous combustion in high gas drainage roadway of coal seam with high gassy and spontaneous combustion[J]. Safety in Coal Mines,2019,50(12):163-169. doi: 10.13347/j.cnki.mkaq.2019.12.037
    [16] XIA Tongqiang,ZHOU Fubao,WANG Xinxin,et al. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs[J]. Fuel,2016,182:886-896. doi: 10.1016/j.fuel.2016.05.090
    [17] ZHANG Hemeng,ZHANG Xiaoming,WANG Yongjun,et al. Application of aging effect model in numerical simulation for predicting spontaneous combustion of coal stockpiles[J]. Journal of Thermal Analysis and Calorimetry,2022,147:13847-13860.
    [18] ZHANG Hemeng,SASAKI K,ZHANG Xiaoming,et al. Numerical simulations on the self-heating behaviours of coal piles considering aging effect[J]. Combustion Theory and Modelling,2019,23(6):1169-1190.
    [19] 郝朝瑜,黄戈,王继仁,等. 惰化降温耦合作用下的采空区低温CO2注入流量与温度研究[J]. 火灾科学,2016,25(2):107-113.

    HAO Chaoyu,HUANG Ge,WANG Jiren,et al. Study on CO2 injection effect on flow rate and temperature based on coupling effec of inerting and cooling[J]. Fire Safety Science,2016,25(2):107-113.
    [20] ZHUO Hui,QIN Botao,QIN Qinghe,et al. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams[J]. Process Safety and Environmental Protection,2019,131:246-254.
    [21] HUANG Zhi'an,MA Zhenzhen,SONG Shouyi,et al. Study on the influence of periodic weighting on the spontaneous combustion "three-zone" in a gob[J]. Journal of China University of Mining & Technology,2018,55:480-491.
  • 加载中
图(10)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  59
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2023-02-10
  • 网络出版日期:  2022-09-28

目录

    /

    返回文章
    返回