留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法

马艾强 姚顽强 蔺小虎 张联队 郑俊良 武谋达 杨鑫

马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.  doi: 10.13272/j.issn.1671-251x.2022070007
引用本文: 马艾强,姚顽强,蔺小虎,等. 面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J]. 工矿自动化,2022,48(12):49-56.  doi: 10.13272/j.issn.1671-251x.2022070007
MA Aiqiang, YAO Wanqiang, LIN Xiaohu, et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.  doi: 10.13272/j.issn.1671-251x.2022070007
Citation: MA Aiqiang, YAO Wanqiang, LIN Xiaohu, et al. Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method[J]. Journal of Mine Automation,2022,48(12):49-56.  doi: 10.13272/j.issn.1671-251x.2022070007

面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法

doi: 10.13272/j.issn.1671-251x.2022070007
基金项目: 国家自然科学基金项目(42001417);国土资源部煤炭资源勘查与综合利用重点实验室项目(KF2021-4)。
详细信息
    作者简介:

    马艾强(1996—),男,陕西榆林人,硕士研究生,主要研究方向为煤矿机器人实时定位与建图,E-mail: aiqiang0125@163.com

  • 中图分类号: TD67

Coal mine roadway environment-oriented LiDAR and IMU fusion positioning and mapping method

  • 摘要: 针对煤矿井下喷浆表面、对称巷道等引起移动机器人自主导航定位与建图失效问题,提出了一种面向煤矿巷道环境的激光雷达(LiDAR)与惯性测量单元(IMU)融合的实时定位与建图方法。首先对原始点云进行分割,利用IMU预积分位姿去除原始点云非线性运动畸变,并对得到的点云进行线、面特征提取。然后将相邻帧的线、面特征进行匹配,在分层位姿估计过程中融合IMU预积分所得到的位姿初值,减少计算迭代次数,提高特征点匹配的精度,解算出当前帧的位姿。最后向因子图中插入局部地图因子、IMU因子、关键帧因子,对位姿进行优化约束,对关键帧与局部地图进行匹配,通过八叉树结构实现地图构建。为验证所提方法的定位性能与建图效果,搭建了Autolabor 、VLP−16 LiDAR和Ellipse−N IMU的实验平台进行验证,并与LeGO−LOAM、LIO−SAM方法进行定性定量对比分析。结果表明:① 在煤矿巷道环境中,面向煤矿巷道环境的LiDAR与IMU融合的实时定位与建图方法三轴方向的绝对定位误差的均值和中值均小于32 cm;对X轴的位姿估计精度最高,其累计误差为1.65 m,位置偏差为2.97 m,建图效果整体良好,建图轨迹未发生漂移;构建的点云地图在完整性和几何结构真实性方面均有着优秀的表现,可以直观反映巷道环境的实际情况,具有良好的鲁棒性。这是因为点云匹配之后进行了分层位姿估计,多因子优化可有效降低全局累计误差,对轨迹精度和地图的一致性提升具有重要作用。② 在楼道走廊环境中,面向煤矿巷道环境的LiDAR与IMU融合的实时定位与建图方法三轴的误差均小于1.01 m,误差均值为5~15 cm,误差范围小,精度高;累计位置偏差仅为1.67 m;完整性与环境匹配均有良好的性能。这是由于通过增加关键帧因子,插入因子图对其新增节点相关变量进行优化,降低了位姿估计漂移,定位与建图精度相对较高。

     

  • 图  1  SLAM基本框架

    Figure  1.  SLAM basic framework

    图  2  分层位姿估计

    Figure  2.  Hierarchical pose estimation

    图  3  关键帧选取

    Figure  3.  Key frames selection

    图  4  多因子图优化

    Figure  4.  Multi-factor graph optimization

    图  5  实验平台

    Figure  5.  Experimental platform

    图  6  场景A(参考点A0—A9)和场景B(参考点B0—B5)的坐标真值

    Figure  6.  Coordinate ture value of scenario A (reference points A0-A9) and scenario B (reference points B0-B5)

    图  7  场景A、B的绝对定位误差分布

    Figure  7.  Absolute positioning error distribution of scenarios A and B

    图  8  煤矿巷道场景A 中3种方法建图结果与轨迹

    Figure  8.  Mapping results and tracks of three methods in coal mine roadway scenarios A

    图  9  楼道走廊场景B中3种方法建图结果与轨迹

    Figure  9.  Mapping results and tracks of three methods in corridor scenarios B

    表  1  实测数据

    Table  1.   Measured data

    数据集地物
    类型
    移动
    目标
    轨迹
    长度/m
    高差/cm最大位移
    速度/(m·s−1
    煤矿巷道A防护装置279150.8
    楼道走廊B室内建筑少量221101.5
    下载: 导出CSV

    表  2  3种方法的累计误差

    Table  2.   Cumulative error of there methods

    场景方法ΔX/mΔY/mΔZ/m位置
    偏差/m
    ALeGO−LOAM13.1016.5644.3949.16
    LIO−SAM2.101.883.044.15
    本文方法1.651.751.742.97
    BLeGO−LOAM1.421.132.332.95
    LIO−SAM2.213.151.053.99
    本文方法0.940.941.011.67
    下载: 导出CSV
  • [1] 文虎,刘洋,郑学召,等. 矿山救援机器人群设计[J]. 工矿自动化,2019,45(9):34-39. doi: 10.13272/j.issn.1671-251x.17476

    WEN Hu,LIU Yang,ZHENG Xuezhao,et al. Design of mine rescue robot group[J]. Industry and Mine Automation,2019,45(9):34-39. doi: 10.13272/j.issn.1671-251x.17476
    [2] 翟国栋,任聪,王帅,等. 多尺度特征融合的煤矿救援机器人目标检测模型[J]. 工矿自动化,2020,46(11):54-58. doi: 10.13272/j.issn.1671-251x.2020050033

    ZHAI Guodong,REN Cong,WANG Shuai,et al. Object detection model of coal mine rescue robot based on multi-scale feature fusion[J]. Industry and Mine Automation,2020,46(11):54-58. doi: 10.13272/j.issn.1671-251x.2020050033
    [3] 孙金礼,陈杰. 煤矿井下巷道贯通测量精度分析及技术方法[J]. 煤炭科学技术,2010,38(6):112-114,66. doi: 10.13199/j.cst.2010.06.72.sunjl.025

    SUN Jinli,CHEN Jie. Analysis and technical method of linkage survey accruacy for underground mine roadway[J]. Coal Science and Technology,2010,38(6):112-114,66. doi: 10.13199/j.cst.2010.06.72.sunjl.025
    [4] 胡建胜. 煤矿全站仪导线测量误差分析及技术措施研究[J]. 能源技术与管理,2018,43(4):170-172. doi: 10.3969/j.issn.1672-9943.2018.04.070

    HU Jiansheng. Study on error analysis and technical measures of total station traverse measurement in coal mine[J]. Energy Technology and Management,2018,43(4):170-172. doi: 10.3969/j.issn.1672-9943.2018.04.070
    [5] LI D,YAO Yuan,SHAO Zhenfeng,et al. From digital earth to smart earth[J]. Chinese Science Bulletin,2014,59(8):722-733. doi: 10.1007/s11434-013-0100-x
    [6] 蒋萍. LiDAR/IMU组合导航定位算法研究[D]. 南昌: 南昌大学, 2021.

    JIANG Ping. Research on LiDAR/IMU integrated navigation and positioning algorithm[D]. Nanchang: Nanchang University, 2021.
    [7] CHEN Chi,YANG Bisheng,TIAN Mao,et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica,2018,47(2):215.
    [8] 陈先中,刘荣杰,张森,等. 煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J]. 煤炭学报,2020,45(6):2182-2192. doi: 10.13225/j.cnki.jccs.zn20.0316

    CHEN Xianzhong,LIU Rongjie,ZHANG Sen,et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society,2020,45(6):2182-2192. doi: 10.13225/j.cnki.jccs.zn20.0316
    [9] DEBEUNNE C,VIVET D. A review of visual-LiDAR fusion based simultaneous localization and mapping[J]. Sensors(Basel,Switzerland),2020,20(7):2068.
    [10] CADENA C,CARLONE L,CARRILLO H,et al. Past,present,and future of simultaneous localization and mapping:toward the robust-perception age[J]. IEEE Transactions on Robotics,2016,32(6):1309-1332. doi: 10.1109/TRO.2016.2624754
    [11] 种一帆,冀杰,宫铭钱,等. 半直接法与IMU融合的双目视觉里程计[J]. 西南师范大学学报(自然科学版),2021,46(2):112-120.

    CHONG Yifan,JI Jie,GONG Mingqian,et al. A stereo visual odometry aided by IMU based on semi-direct method[J]. Journal of Southwest China Normal University(Natural Science Edition),2021,46(2):112-120.
    [12] ZHANG Ji,SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots,2017,41(2):401-416. doi: 10.1007/s10514-016-9548-2
    [13] 周治国,曹江微,邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报,2021,42(9):13-27. doi: 10.19650/j.cnki.cjsi.J2107897

    ZHOU Zhiguo,CAO Jiangwei,DI Shunfan. Overview of 3D Lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument,2021,42(9):13-27. doi: 10.19650/j.cnki.cjsi.J2107897
    [14] SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Las Vegas, 2021: 5135-5142.
    [15] HEMANN G, SINGH S, KAESS M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]. IEEE/RSJ International Conference on Inetlligent Robots & Systems, Daejeon, 2016: 1659-1666.
    [16] YE Haoyang, CHEN Yuying, LIU Ming, et al. Tightly coupled 3d lidar inertial odometry and mapping[C]. International Conference on Robotics and Automation(ICRA), Montreal, 2019: 3144-3150.
    [17] GENTIL C L,VIDAL-CALLLEJJA T,HUANG Shoudong. IN2LAAMA:inertial lidar localization autocalibration and mapping[J]. IEEE Transactions on Robotics,2021,37(1):275-290. doi: 10.1109/TRO.2020.3018641
    [18] KULKARNI M, DHARMADHIKARI M, TRANZATTO M, et al. Autonomous teamed exploration of subterranean environments using legged and aerial robots[C]. International Conference on Robotics and Automatioan(ICRA), Philadelphia, 2022: 3306-3313.
    [19] FRANK N, TILMAN K, ROBERT K, et al. Mc2SLAM: real-time inertial lidar odometry using two-scan motion compensation[C]. German Conference on Pattern Recognition, Cham, 2018: 60-72.
    [20] REN Zhuli,WANG Liguan,BI Lin. Robust GICP-based 3D LiDAR SLAM for underground mining environment[J]. Sensors (Basel Switzerland),2019,19(13):2915. doi: 10.3390/s19132915
    [21] SHAN Tixiao, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2019: 4758-4765.
    [22] ZHAO Yue,ZHANG Jian,FU Chiwing,et al. KD-Box:line-segment-based KD-tree for interactive exploration of large-scale time-series data[J]. IEEE Transactions on Visualization and Computer Graphics,2021,28(1):890-900.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  31
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-11-26
  • 网络出版日期:  2022-08-09

目录

    /

    返回文章
    返回