[1] |
石焕,程宏志,刘万超. 我国选煤技术现状及发展趋势[J]. 煤炭科学技术,2016,44(6):169-174. doi: 10.13199/j.cnki.cst.2016.06.028SHI Huan,CHENG Hongzhi,LIU Wanchao. Present status and development trend of China's coal preparation technology[J]. Coal Science and Technology,2016,44(6):169-174. doi: 10.13199/j.cnki.cst.2016.06.028
|
[2] |
王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32. doi: 10.13272/j.issn.1671-251x.17465WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32. doi: 10.13272/j.issn.1671-251x.17465
|
[3] |
匡亚莉. 智能化选煤厂建设的内涵与框架[J]. 选煤技术,2018(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022KUANG Yali. The intension and framework for the construction of intelligent coal preparation plant[J]. Coal Preparation Technology,2018(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022
|
[4] |
张月飞,王伟,代伟. 重介分选过程产品指标在线预测方法研究[J]. 煤炭工程,2021,53(增刊1):108-111.ZHANG Yuefei,WANG Wei,DAI Wei. On-line prediction of product indicators in dense medium coal separation[J]. Coal Engineering,2021,53(S1):108-111.
|
[5] |
张凌智,代伟,马小平. 重介质选煤过程先进控制:研究进展及展望[J]. 工矿自动化,2020,46(8):21-27,69. doi: 10.13272/j.issn.1671-251x.2020020001ZHANG Lingzhi,DAI Wei,MA Xiaoping. Advanced control of dense medium coal separation process:research progresses and prospects[J]. Industry and Mine Automation,2020,46(8):21-27,69. doi: 10.13272/j.issn.1671-251x.2020020001
|
[6] |
曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification method and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005
|
[7] |
董永胜,陈为高,侯佃平,等. 智能化选煤厂研究与建议[J]. 工矿自动化,2021,47(增刊1):26-31.DONG Yongsheng,CHEN Weigao,HOU Dianping,et al. Research and suggestions on intelligent coal preparation plant[J]. Industry and Mine Automation,2021,47(S1):26-31.
|
[8] |
RAO B V,KAPUR P C,KONNUR R. Modeling the size-density partition surface of dense-medium separators[J]. International Journal of Mineral Processing,2003,72(1/2/3/4):443-453. doi: 10.1016/S0301-7516(03)00118-2
|
[9] |
WANG B,CHU K W,YU A B,et al. Modeling the multiphase flow in a dense medium cyclone[J]. Industrial & Engineering Chemistry Research,2009,48(7):3628-3639.
|
[10] |
NARASIMHA M,BRENNAN M S,HOLTHAM P N. A review of flow modeling for dense medium cyclones[J]. Coal Preparation,2006,26(2):55-89. doi: 10.1080/07349340600619733
|
[11] |
MEYER E J,CRAIG I K. The development of dynamic models for a dense medium separation circuit in coal beneficiation[J]. Minerals Engineering,2010,23(10):791-805. doi: 10.1016/j.mineng.2010.05.020
|
[12] |
ZHANG Lijun,XIA Xiaohua,ZHU Bing. A dual-loop control system for dense medium coal washing processes with sampled and delayed measurements[J]. IEEE Transactions on Control Systems Technology,2017,25(6):2211-2218. doi: 10.1109/TCST.2016.2640946
|
[13] |
陈龙,刘全利,王霖青,等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报,2017,43(6):944-954. doi: 10.16383/j.aas.2017.c170136CHEN Long,LIU Quanli,WANG Linqing,et al. Data-driven prediction on performance indicators in process industry:a survey[J]. Acta Automatica Sinica,2017,43(6):944-954. doi: 10.16383/j.aas.2017.c170136
|
[14] |
李文正,孙伟,郑车晓,等. 应用模糊神经网络对重介质密度进行估算[J]. 矿山机械,2011,39(9):96-99. doi: 10.16816/j.cnki.ksjx.2011.09.027LI Wenzheng,SUN Wei,ZHENG Chexiao,et al. Estimation on dense-medium density with fuzzy neural network[J]. Mining & Processing Equipment,2011,39(9):96-99. doi: 10.16816/j.cnki.ksjx.2011.09.027
|
[15] |
李停. 基于无模型自适应的重介悬浮液密度控制[D]. 徐州: 中国矿业大学, 2016.LI Ting. Density control of dense medium suspension based on the model-free adaptive control[D]. Xuzhou: China University of Mining and Technology, 2016.
|
[16] |
DAI Wei,LI Depeng,ZHOU Ping,et al. Stochastic configuration networks with block increments for data modeling in process industries[J]. Information Sciences,2019,484:367-386. doi: 10.1016/j.ins.2019.01.062
|
[17] |
DAI Wei,HU Jincheng,CHENG Yuhu,et al. RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes[J]. Journal of Central South University,2019,26(12):3338-3350. doi: 10.1007/s11771-019-4257-6
|
[18] |
柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报,2013,39(11):1744-1757. doi: 10.3724/SP.J.1004.2013.01744CHAI Tianyou. Operational optimization and feedback control for complex industrial processe[J]. Acta Automatica Sinica,2013,39(11):1744-1757. doi: 10.3724/SP.J.1004.2013.01744
|
[19] |
赵春祥,叶桂森. 重介质选煤过程控制模型及控制算法的研究[J]. 煤炭学报,2000,25(增刊1):196-200. doi: 10.13225/j.cnki.jccs.2000.s1.045ZHAO Chunxiang,YE Guisen. Study of heavy medium coal preparation process control model and control algorithmn[J]. Journal of China Coal Society,2000,25(S1):196-200. doi: 10.13225/j.cnki.jccs.2000.s1.045
|
[20] |
邱佳楷,王然风,付翔. 重介质悬浮液密度宽域智能控制系统设计[J]. 工矿自动化,2019,45(7):33-37. doi: 10.13272/j.issn.1671-251x.17429QIU Jiakai,WANG Ranfeng,FU Xiang. Design of intelligent control system for dense medium suspension density with wide domain[J]. Industry and Mine Automation,2019,45(7):33-37. doi: 10.13272/j.issn.1671-251x.17429
|
[21] |
曹珍贯. 重介分选煤过程中重介质的密度预测控制研究[D]. 徐州: 中国矿业大学, 2014.CAO Zhenguan. Study of prediction control on heavy medium density in the process of coal preparation[D]. Xuzhou: China University of Mining and Technology, 2014.
|
[22] |
ZHANG Lijun,XIA Xiaohua. A model predictive control for coal beneficiation dense medium cyclones[J]. IFAC Proceedings Volumes,2014,47(3):9810-9815. doi: 10.3182/20140824-6-ZA-1003.02218
|
[23] |
代伟,张凌智,褚菲,等. 重介质选煤过程模型与数据混合驱动的自适应运行反馈控制[J]. 控制理论与应用,2020,37(2):283-294. doi: 10.7641/CTA.2019.80852DAI Wei,ZHANG Lingzhi,CHU Fei,et a1. Model-data hybrid driven adaptive operational feedback control of dense medium coal preparation process[J]. Control Theory & Applications,2020,37(2):283-294. doi: 10.7641/CTA.2019.80852
|
[24] |
张凌智, 代伟, 陆文捷, 等. 非线性工业过程多速率分层运行优化控制及选煤过程应用研究[C]. 第30届中国过程控制会议, 昆明, 2019: 287.ZHANG Lingzhi, DAI Wei, LU Wenjie, et al. Multi-rate layered optimal operational control of nonlinear industrial processes[C]. Proceedings of the 30th Chinese Process Control Conference, Kunming, 2019: 287.
|
[25] |
SUN Xiaolu,CAO Zhenguan,YUE Yuanhe,et al. Online prediction of dense medium suspension density based on phase space reconstruction[J]. Particulate Science and Technology,2018,36(8):989-998. doi: 10.1080/02726351.2017.1333180
|
[26] |
袁鹏涛. 可变煤质的重介分选过程悬浮液密度设定智能决策与控制研究[D]. 太原: 太原理工大学, 2020.YUAN Pengtao. Study on intelligent decision and control of susupension density setting in heavy medium separation process with variable coal quality[D]. Taiyuan: Taiyuan University of Technology, 2020.
|
[27] |
胡金良,李彤昀,王光辉. 基于强化学习的重介质选煤过程优化控制[J]. 煤炭工程,2022,54(1):137-141.HU Jinliang,LI Tongyun,WANG Guanghui. Optimal control of dense medium coal preparation process based on reinforcement learning[J]. Coal Engineering,2022,54(1):137-141.
|
[28] |
陶志达. 选煤厂智能化建设现状调查与分析[J]. 煤炭加工与综合利用,2022(1):66-70. doi: 10.16200/j.cnki.11-2627/td.2022.01.013TAO Zhida. Investigation and analysis on the current situation of intelligent construction in coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):66-70. doi: 10.16200/j.cnki.11-2627/td.2022.01.013
|
[29] |
桂卫华,岳伟超,谢永芳,等. 铝电解生产智能优化制造研究综述[J]. 自动化学报,2018,44(11):1957-1970. doi: 10.16383/j.aas.2018.c180198GUI Weihua,YUE Weichao,XIE Yongfang,et al. A review of intelligent optimal manufacturing for aluminum reduction production[J]. Acta Automatica Sinica,2018,44(11):1957-1970. doi: 10.16383/j.aas.2018.c180198
|