留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于采煤机摇臂销轴载荷数据卡尔曼最优估计的煤岩识别方法

史光亮 尉瑞 王海燕 葛津铭 张盛涛

史光亮,尉瑞,王海燕,等. 基于采煤机摇臂销轴载荷数据卡尔曼最优估计的煤岩识别方法[J]. 工矿自动化,2023,49(1):109-115, 122.  doi: 10.13272/j.issn.1671-251x.2022060093
引用本文: 史光亮,尉瑞,王海燕,等. 基于采煤机摇臂销轴载荷数据卡尔曼最优估计的煤岩识别方法[J]. 工矿自动化,2023,49(1):109-115, 122.  doi: 10.13272/j.issn.1671-251x.2022060093
SHI Guangliang, YU Rui, WANG Haiyan, et al. Coal and rock identification method based on Kalman optimal estimation of load data of rocker arm pin axle of shearer[J]. Journal of Mine Automation,2023,49(1):109-115, 122.  doi: 10.13272/j.issn.1671-251x.2022060093
Citation: SHI Guangliang, YU Rui, WANG Haiyan, et al. Coal and rock identification method based on Kalman optimal estimation of load data of rocker arm pin axle of shearer[J]. Journal of Mine Automation,2023,49(1):109-115, 122.  doi: 10.13272/j.issn.1671-251x.2022060093

基于采煤机摇臂销轴载荷数据卡尔曼最优估计的煤岩识别方法

doi: 10.13272/j.issn.1671-251x.2022060093
基金项目: 国家自然科学基金面上项目(52174143)。
详细信息
    作者简介:

    史光亮(1987—),男,河南安阳人,工程师,主要从事煤矿安全方面工作,E-mail:565323087@qq.com

    通讯作者:

    张盛涛(1999—),男,辽宁普兰店人,博士研究生,研究方向为机械设计及理论,E-mail:2876481044@qq.com

  • 中图分类号: TD421

Coal and rock identification method based on Kalman optimal estimation of load data of rocker arm pin axle of shearer

  • 摘要: 采煤机的煤岩识别技术是实现智能控制的基础,现有煤岩识别方法对现场环境及检测设备要求较高,实际综采工作面难以满足所需的必要条件。针对上述问题,提出了一种基于采煤机摇臂销轴载荷数据卡尔曼最优估计的煤岩识别方法,在不增加外部附属仪器设备的基础上,采用摇臂销轴传感器替换现有销轴感知煤岩载荷,可较好地适应环境。通过测定位于摇臂与连接架连接处摇臂销轴传感器的应变数据,采用卡尔曼最优估计算法对载荷数据进行降噪处理,使采煤机在截割煤岩等不同工况下的载荷区间相互分开,通过判断实时载荷处于的区间实现煤岩识别。构建随机载荷信号,利用卡尔曼最优估计算法、最小均方(LMS)自适应估计算法、变步长LMS自适应估计算法对相同信号进行降噪处理,结果验证了卡尔曼最优估计算法对载荷信号降噪处理的可行性与优越性。在某综采实验平台上进行煤岩识别验证,以空载、截割煤壁、截割岩石3个阶段对煤壁侧上端摇臂销轴沿采煤机牵引方向的载荷进行分析,结果表明:载荷数据未经卡尔曼最优估计算法处理之前,截割煤壁与截割岩石状态下的载荷区间存在重合部分,无法准确完成煤岩识别;载荷数据经过卡尔曼最优估计算法处理后,空载、截割煤壁、截割岩石3种工况下的载荷区间相互分开,且各工况下的载荷区间长度缩短了65.6%~83.3%,均方差降低了66.5%~72.9%,数据波动更小,有效提高了数据的辨识度。在实际工程应用中可根据该方法设定截割煤层状态时的期望载荷受力范围,一旦超出该范围,则判断此时不是截割煤壁状态,从而实现煤岩识别。

     

  • 图  1  采煤机结构

    Figure  1.  Shearer structure

    图  2  摇臂销轴空间受力模型

    Figure  2.  The spatial force model of rocker arm pin axle

    图  3  卡尔曼算法流程

    Figure  3.  The Kalman's algorithm flow

    图  4  仿真信号曲线

    Figure  4.  Simulation signal curve

    图  5  多种降噪算法均方误差对比

    Figure  5.  Comparison of mean square error of various noise reduction algorithms

    图  6  煤岩截割系统

    Figure  6.  Coal and rock cutting system

    图  7  测点位置与承受载荷

    Figure  7.  Measurement point position and bearing load

    图  8  摇臂销轴传感器现场安装

    Figure  8.  Field installation of rocker arm pin axle sensor

    图  9  数据采集及传输过程

    Figure  9.  Data acquisition and transmission process

    图  10  空载、截割煤壁和截割岩石工况下摇臂销轴载荷曲线

    Figure  10.  Load curve of rocker arm pin axle under no-load, cutting the coal wall and cutting the rock

    图  11  空载、截割煤壁和截割岩石工况下摇臂销轴载荷最优估计

    Figure  11.  Optimal estimation of rocker arm pin axle under no-load, cutting the coal wall and cutting the rock

    表  1  空载、截割煤壁和截割岩石工况下摇臂销轴载荷及均方差

    Table  1.   Load and mean variance of rocker arm pin axle under no-load, cutting the coal wall and cutting the rock

    采煤机运行状态载荷/kN均方差/kN
    空载32.62 ~ 42.060.290 3
    截割煤壁−75.99 ~ −13.478.366 0
    截割岩石−120.07 ~ −35.9311.033 0
    下载: 导出CSV

    表  2  最优估计处理后空载、截割煤壁和截割岩石工况下摇臂销轴载荷区间及均方差

    Table  2.   Load interval and mean square difference in each state after optimal estimation

    采煤机运行状态载荷区间/kN均方差/kN
    空载35.81 ~ 37.390.0787
    截割煤壁−50.68 ~ −29.162.690 0
    截割岩石−75.33 ~ −58.433.697 0
    下载: 导出CSV
  • [1] 任芳. 煤岩截割状态识别方法研究[M]. 北京: 煤炭工业出版社, 2017.

    REN Fang. Study on the identification method of coal and rock cutting[M]. Beijing: China Coal Industry Publishing House, 2017.
    [2] 葛世荣,王忠宾,王世博. 互联网+采煤机智能化关键技术研究[J]. 煤炭科学技术,2016,44(7):1-9.

    GE Shirong,WANG Zhongbin,WANG Shibo. Study on key technology of Internet plus intelligent coal shearer[J]. Coal Science and Technology,2016,44(7):1-9.
    [3] 王镇. 基于记忆截割的采煤机自适应截割控制研究[D]. 重庆: 重庆大学, 2016.

    WANG Zhen. Research of shearer self-adaptive cutting control based on memory cutting technology[D]. Chongqing: Chongqing University, 2016.
    [4] 王昕. 基于电磁波技术的煤岩识别方法研究[D]. 徐州: 中国矿业大学, 2017.

    WANG Xin. Study of coal-rock identification method based on electromagnetic wave technology[D]. Xuzhou: China University of Mining and Technology, 2017.
    [5] 王海舰. 煤岩界面多信息融合识别理论与实验研究[D]. 阜新: 辽宁工程技术大学, 2017.

    WANG Haijian. Theoretical and experimental study on coal-rock interface identification based on multi information fusion[D]. Fuxin: Liaoning Technical University, 2017.
    [6] 文立堃. 采煤机试切滚筒截割动力学分析[D]. 青岛: 山东科技大学, 2020.

    WEN Likun. Dynamic analysis of shearer trial cutting drum[D]. Qingdao: Shandong University of Science and Technology, 2020.
    [7] 杨文萃,邱锦波,张阳,等. 煤岩界面识别的声学建模[J]. 煤炭科学技术,2015,43(3):100-103.

    YANG Wencui,QIU Jinbo,ZHANG Yang,et al. Acoustic modeling of coal-rock interface identification[J]. Coal Science and Technology,2015,43(3):100-103.
    [8] ASFAHANI J, BORSARU M. Low-activity spectrometric gamma-ray logging technique for delineation of coal-rock interfaces in dry blast holes[J]. Applied Radiation and Isotopes: Including Data Instrumentation and Methods for Use in Agriculture, Industry and Medicine. 2007, 65(6): 748-755.
    [9] 孙继平,陈浜. 基于双树复小波域统计建模的煤岩识别方法[J]. 煤炭学报,2016,41(7):1847-1858.

    SUN Jiping,CHEN Bang. An approach to coal-rock recognition via statistical modeling in dual-tree complex wavelet domain[J]. Journal of China Coal Society,2016,41(7):1847-1858.
    [10] ZHANG Dan, ZHAO Ning, TONG Minming, et al. Design of the rock coal shearer cutting mechanism and its vibration analysis[C]. IEEE International Conference on Mechatronics and Automation, Harbin, 2016: 496-501.
    [11] 刘俊利, 赵豪杰, 李长有. 基于采煤机滚筒截割振动特性的煤岩识别方法[J]. 煤炭科学技术. 2013, 41(10): 93-95, 116.

    LIU Junli, ZHAO Haojie, LI Changyou. Coal-rock recognition method based on cutting vibration features of coal shearer drums[J]. Coal Science and Technology, 2013, 41(10): 93-95, 116.
    [12] WANG Xin,HU Kexiang,ZHANG Lei,et al. Characterization and classification of coals and rocks using terahertz time-domain spectroscopy[J]. Journal of Infrared,Millimeter,and Terahertz Waves,2017,38(2):248-260. doi: 10.1007/s10762-016-0317-2
    [13] 薛光辉,柳二猛,赵新赢,等. 基于声压信号时域特征的综放工作面煤岩性状识别方法研究[J]. 煤炭工程,2015,47(6):119-122.

    XUE Guanghui,LIU Ermeng,ZHAO Xinying,et al. Research of coal-rock character recognition in fully mechanized caving faces based on acoustic pressure data time domain feature[J]. Coal Engineering,2015,47(6):119-122.
    [14] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363-3370.

    ZHANG Qiang,SUN Shaoan,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363-3370.
    [15] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008.

    WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering the pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
    [16] 田立勇,戴渤鸿,王启铭. 基于采煤机摇臂销轴多应变数据融合的煤岩识别方法[J]. 煤炭学报,2020,45(3):1203-1210.

    TIAN Liyong,DAI Bohong,WANG Qiming. Coal-rock identification method based on multi-strain data fusion of shearer rocker pin shaft[J]. Journal of China Coal Society,2020,45(3):1203-1210.
    [17] 李锦冰. 基于卡尔曼滤波器及重构方法的故障预测研究[D]. 大连: 大连理工大学, 2019.

    LI Jinbing. Fault prognosis based on Kalman filter and reconstruction algorithm[D]. Dalian: Dalian University of Technology, 2019.
    [18] 杨丹. 卡尔曼滤波器设计及其应用研究[D]. 长沙: 湘潭大学, 2014.

    YANG Dan. A research on design and application of Kalman filter[D]. Changsha: Xiangtan University, 2014.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  54
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 修回日期:  2022-12-20
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回