留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AI视频图像分析在选煤厂智能化中的应用现状与发展趋势

折小江 刘江 王兰豪

折小江,刘江,王兰豪. AI视频图像分析在选煤厂智能化中的应用现状与发展趋势[J]. 工矿自动化,2022,48(11):45-53, 109.  doi: 10.13272/j.issn.1671-251x.2022060092
引用本文: 折小江,刘江,王兰豪. AI视频图像分析在选煤厂智能化中的应用现状与发展趋势[J]. 工矿自动化,2022,48(11):45-53, 109.  doi: 10.13272/j.issn.1671-251x.2022060092
SHE Xiaojiang, LIU Jiang, WANG Lanhao. Application status and prospect of AI video image analysis in intelligent coal preparation plant[J]. Journal of Mine Automation,2022,48(11):45-53, 109.  doi: 10.13272/j.issn.1671-251x.2022060092
Citation: SHE Xiaojiang, LIU Jiang, WANG Lanhao. Application status and prospect of AI video image analysis in intelligent coal preparation plant[J]. Journal of Mine Automation,2022,48(11):45-53, 109.  doi: 10.13272/j.issn.1671-251x.2022060092

AI视频图像分析在选煤厂智能化中的应用现状与发展趋势

doi: 10.13272/j.issn.1671-251x.2022060092
详细信息
    作者简介:

    折小江(1986 -),男,陕西榆林人,工程师,主要从事选煤厂智能化建设研究及管理工作,E-mail:746175448@qq.com

    通讯作者:

    刘江(1999 -),男,江西都昌人,硕士研究生,主要研究方向为机器学习算法、数据驱动建模与控制,E-mail:liu2230861651@gmail.com

  • 中图分类号: TD67/948

Application status and prospect of AI video image analysis in intelligent coal preparation plant

  • 摘要: 人工智能(AI)视频图像分析是选煤厂智能化的重要组成部分,可实现对选煤厂设备、环境、人员、选煤全流程的重要参数的智能监测。给出了目前智能化选煤厂基本架构,指出现有研究大部分是利用AI视频图像分析技术构建对选煤厂人员、设备、环境、管理的安全监测系统,给出了智能视频图像监测系统的构建过程。针对选煤厂智能化建设中的安全环保生产和提高产品质量两大目标,从异物检测、智能分选、设备运行状态监测、煤炭粒度检测、人员行为监控和环境与安全检测等6个方面介绍了AI视频图像分析技术在选煤厂智能化选煤上的应用现状。对AI视频图像分析在选煤厂智能化应用进行了展望,指出不仅要从宏观架构上搭建基于5G通信、物联网、AI、智能控制理论和选煤行业技术的多层级视频监控系统,还要从微观上优化现有通用的智能视频监测方法或算法,开发出适用于选煤厂环境的智能视频图像分析技术:机器视觉、计算机视觉应与深度学习高度融合,面对不同工况,合理应用机器视觉与计算机视觉的不同优势;建立多层级一体化监控系统框架,在框架内部署并优化算法模型;建立多元化的视频图像数据库,充分利用不同图像类型的数据特征,开发针对性分析算法;深入研究分布式数据流与实时AI视频图像分析,构建实时AI分布式系统,合理调度视频图像分析模型,提高实时模型的计算效率与准确性。

     

  • 图  1  智能化选煤厂基本架构

    Figure  1.  Basic structure of intelligent coal preparation plant

    图  2  选煤智能化视频监控系统

    Figure  2.  Intelligent video monitoring system for coal preparation

    表  1  烟煤、无烟煤和褐煤的粒度等级划分

    Table  1.   Classification of particle size of bituminous coal, anthracite and lignite mm

    粒度名称无烟煤和烟煤粒度褐煤粒度
    特大块>100~300>100~300
    大块>50~100>50~100
    混大块>50>50
    中块>25~50, >25~80>25~50, >25~80
    小块>13~25>13~25
    混中块>13~50, >13~80
    混块>13, >25
    混粒>6~25
    粒煤>6~13
    混煤<50
    末煤<13, <25<13, <25
    粉煤<6
    下载: 导出CSV
  • [1] 张家富. 选煤厂智能化技术和设备现状分析[J]. 煤炭加工与综合利用,2022(1):88-92. doi: 10.16200/j.cnki.11-2627/td.2022.01.017

    ZHANG Jiafu. Present situation analysis of intelligent technology and equipment in coal preparation plant[J]. Coal Processing & Comprehensive Utilization,2022(1):88-92. doi: 10.16200/j.cnki.11-2627/td.2022.01.017
    [2] 匡亚莉. 智能化选煤厂建设的内涵与框架[J]. 选煤技术,2018,46(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022

    KUANG Yali. The intension and framework for the construction of intelligent coal preparation plant[J]. Coal Preparation Technology,2018,46(1):85-91. doi: 10.16447/j.cnki.cpt.2018.01.022
    [3] 赵亮,孙魁元,韩宝虎,等. 基于人工智能视频分析的选煤厂安全管理研究[J]. 中国安全科学学报,2021,31(增刊1):19-23. doi: 10.16265/j.cnki.issn1003-3033.2021.S1.004

    ZHAO Liang,SUN Kuiyuan,HAN Baohu,et al. Research on safety management of coal preparation plants based on artificial intelligence video analysis[J]. China Safety Science Journal,2021,31(S1):19-23. doi: 10.16265/j.cnki.issn1003-3033.2021.S1.004
    [4] 杨景峰. 基于AI视频识别技术的井下规范操作监控系统设计[J]. 陕西煤炭,2021,40(1):4-8,46. doi: 10.3969/j.issn.1671-749X.2021.01.003

    YANG Jingfeng. Design of underground standard operation monitoring system based on AI video recognition technology[J]. Shaanxi Coal,2021,40(1):4-8,46. doi: 10.3969/j.issn.1671-749X.2021.01.003
    [5] WU Yaqin,CHEN Mengmeng,WANG Kai,et al. A dynamic information platform for underground coal mine safety based on Internet of things[J]. Safety Science,2019,113:9-18. doi: 10.1016/j.ssci.2018.11.003
    [6] CHEN Hao, ZI Xinli, ZHANG Qing, et al. Computer big data technology in Internet network communication video monitoring of coal preparation plant[C]. 2nd International Conference on Applied Physics and Computing(ICAPC), Ottawa, 2021: 1-6.
    [7] MA Long, CHENG Qing. Design and application of intelligent monitoring and identification system in coal mine[C]. 3rd International Conference on Green Energy and Sustainable Development, Shenyang, 2020: 1027-1031.
    [8] ZHANG Kanghui,WANG Weidong,LYU Ziqi,et al. Computer vision detection of foreign objects in coal processing using attention CNN[J]. Engineering Applications of Artificial Intelligence,2021,102:116-128.
    [9] ZHAO Xiaohu, LI Xiao, YIN Liangfei, et al. Foreign body recognition for coal mine conveyor based on improved PCANet[C]. 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi'an, 2019: 1-6.
    [10] WANG Yuanbin,WANG Yujiang,DANG Langfei. Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J]. Journal of Ambient Intelligence and Humanized Computing,2020:1-10. DOI: 10.1007/s12652-020-02495-w.
    [11] 高小强. 智能巡检机器人视频监测皮带异物自动识别报警技术研究[J]. 电子技术与软件工程,2016(11):158-160.

    GAO Xiaoqiang. Research on automatic recognition and alarm technology of belt foreign matters monitored by intelligent inspection robot[J]. Electronic Technology & Software Engineering,2016(11):158-160.
    [12] 郭亮. 基于视频图像处理的煤与矸石分选方法的研究[D]. 青岛: 山东科技大学, 2014.

    GUO Liang. Study of the coal and gangue sorting method based on the video image processing[D]. Qingdao: Shandong University of Science and Technology, 2014.
    [13] 丁泽海,薛斌,窦东阳. 图像处理在煤矸石分选系统中的应用[J]. 煤矿机械,2017,38(3):173-175.

    DING Zehai,XUE Bin,DOU Dongyang. Application of image processing in coal and gangue separation system[J]. Coal Mine Machinery,2017,38(3):173-175.
    [14] 吴开兴,宋剑. 基于灰度共生矩阵的煤与矸石自动识别研究[J]. 煤炭工程,2016,48(2):98-101.

    WU Kaixing,SONG Jian. Automatic coal-gangue identification based on gray level co-occurrence matrix[J]. Coal Engineering,2016,48(2):98-101.
    [15] 张勇. 基于视频处理的煤矸石识别研究[D]. 徐州: 中国矿业大学, 2018.

    ZHANG Yong. Research on gangue identification based on video processing[D]. Xuzhou: China University of Mining and Technology, 2018.
    [16] 徐志强,吕子奇,王卫东,等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报,2020,45(6):2207-2216. doi: 10.13225/j.cnki.jccs.zn20.0307

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al. Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society,2020,45(6):2207-2216. doi: 10.13225/j.cnki.jccs.zn20.0307
    [17] LI Dongjun,ZHANG Zhenxin,XU Zhihua,et al. An image-based hierarchical deep learning framework for coal and gangue detection[J]. IEEE Access,2019:7. DOI: 10.1109/access.2019.2961075.
    [18] MORAR S H,HARRIS M C,BRADSHAW D J. The use of machine vision to predict flotation performance[J]. Minerals Engineering,2012(36/37/38):31-36.
    [19] MASSINAEI M,JAHEDSARAVANI A,MOHSENI H. Recognition of process conditions of a coal column flotation circuit using computer vision and machine learning[J]. International Journal of Coal Preparation and Utilization,2022,42(7):2204-2218. doi: 10.1080/19392699.2020.1823843
    [20] 唐朝晖,刘金平,陈青,等. 基于预测模型的浮选过程pH值控制[J]. 控制理论与应用,2013,30(7):885-890. doi: 10.7641/CTA.2013.12042

    TANG Zhaohui,LIU Jinping,CHEN Qing,et al. pH control in flotation process based on prediction model[J]. Control Theory & Applications,2013,30(7):885-890. doi: 10.7641/CTA.2013.12042
    [21] 阳春华,任会峰,桂卫华,等. 基于机器视觉的矿物浮选pH软测量方法[J]. 计算机工程与应用,2011,47(1):228-230,248. doi: 10.3778/j.issn.1002-8331.2011.01.065

    YANG Chunhua,REN Huifeng,GUI Weihua,et al. Machine-vision-based soft sensor of pH for flotation process[J]. Computer Engineering and Applications,2011,47(1):228-230,248. doi: 10.3778/j.issn.1002-8331.2011.01.065
    [22] ZHU Aichun, HUA Gang, WANG Yongxing. The research on the detection method of belt deviation by video in coal mine[C]. International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, 2011: 430-433.
    [23] 滕悦,徐少川,张庆东. 基于图像处理技术的皮带跑偏监测系统设计[J]. 烧结球团,2020,45(2):10-14. doi: 10.13403/j.sjqt.2020.02.018

    TENG Yue,XU Shaochuan,ZHANG Qingdong. Design of monitoring system for belt deviation based on image processing technology[J]. Sintering and Pelletizing,2020,45(2):10-14. doi: 10.13403/j.sjqt.2020.02.018
    [24] 田勇. 机器视觉技术在选煤厂运输机溜槽堵塞检测中的应用[J]. 山西能源学院学报,2021,34(4):5-6,9. doi: 10.3969/j.issn.1008-8881.2021.04.002

    TIAN Yong. Application of machine vision technology in detection of transport chute blockage in coal preparation plant[J]. Journal of Shanxi Institute of Energy,2021,34(4):5-6,9. doi: 10.3969/j.issn.1008-8881.2021.04.002
    [25] GB/T17608—2006 煤炭产品品种和等级划分[S].

    GB/T17608—2006 Coal product variety and grade division[S].
    [26] 张雷, 孙颖, 田志辉. 基于机器视觉的物料粒度在线检测方法: 201811478128.8[P]. 2019-04-09.

    ZHANG Lei, SUN Ying, TIAN Zhihui. Online detection method of material granularity based on machine vision: 201811478128.8[P]. 2019-04-09.
    [27] 郭福彧. 基于机器视觉的细碎矿石粒度分布在线检测技术研究[D]. 沈阳: 东北大学, 2015.

    GUO Fuyu. Research on the technology of the fine crushing ore particle size distribution on-line detection based on machine vision[D]. Shenyang: Northeastern University, 2015.
    [28] 董珂. 基于机器视觉的矿石粒度检测技术研究[D]. 北京: 北京工业大学, 2013.

    DONG Ke. Research on ore granularity detection technology based on machine vision[D]. Beijing: Beijing University of Technology, 2013.
    [29] 张宗华. 选煤厂人员智能视频监控系统设计[J]. 工矿自动化,2013,39(4):76-79. doi: 10.7526/j.issn.1671-251X.2013.04.020

    ZHANG Zonghua. Design of intelligent video monitoring system of personnel of coal preparation plant[J]. Industry and Mine Automation,2013,39(4):76-79. doi: 10.7526/j.issn.1671-251X.2013.04.020
    [30] 朱煜,赵江坤,王逸宁,等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报,2016,42(6):848-857. doi: 10.16383/j.aas.2016.c150710

    ZHU Yu,ZHAO Jiangkun,WANG Yining,et al. A review of human action recognition based on deep learning[J]. Acta Automatica Sinica,2016,42(6):848-857. doi: 10.16383/j.aas.2016.c150710
    [31] 刘忠育. 基于深度学习的矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2021.

    LIU Zhongyu. Research on recognition methods of miners' unsafe behavior based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2021.
    [32] 冯小琴. 多场景视频智能处理系统及调度管理算法研究[D]. 北京: 北京工业大学, 2019.

    FENG Xiaoqin. Research on multi-scene video intelligent processing system and scheduling management algorithm[D]. Beijing: Beijing University of Technology, 2019.
    [33] 周晨晖. 基于深度学习的煤矿复杂场景人员检测与统计分析方法研究[D]. 徐州: 中国矿业大学, 2019.

    ZHOU Chenhui. Research on personnel detection and statistical analysis in coal mine complex scenes based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2019.
    [34] 张翼翔,林松,李雪. 基于CenterNet-GhostNet的选煤厂危险区域人员检测[J]. 工矿自动化,2022,48(4):66-71. doi: 10.13272/j.issn.1671-251x.2021080058

    ZHANG Yixiang,LIN Song,LI Xue. Personnel detection in dangerous area of coal preparation plant based on CenterNet-GhostNet[J]. Journal of Mine Automation,2022,48(4):66-71. doi: 10.13272/j.issn.1671-251x.2021080058
    [35] LI Guohui,WU Jieping,LUO Zhiwen,et al. Vision-based measurement of dust concentration by image transmission[J]. IEEE Transactions on Instrumentation and Measurement,2019,68(10):3942-3949. doi: 10.1109/TIM.2018.2883999
    [36] WANG Zheng,ZHENG Xu,LI Dongyan,et al. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions[J]. Computers in Industry,2021,132. DOI: 10.1016/J.COMPIND.2021.103506.
    [37] 宋敬海. 基于嵌入式系统和机器视觉的火灾检测系统研究[D]. 镇江: 江苏科技大学, 2008.

    SONG Jinghai. Research on fire detection system based on embedded system and machine vision[D]. Zhenjiang: Jiangsu University of Science and Technology, 2008.
    [38] CUI Haoyang, XU Yongpeng, ZENG Jundong, et al. The methods in infrared thermal imaging diagnosis technology of power equipment[C]. IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, 2013: 246-251.
    [39] JADIN M S, GHAZALI K H. Gas leakage detection using thermal imaging technique[C]. The 16th International Conference on Computer Modelling and Simulation, Cambridge, 2014: 302-306.
    [40] NARKHEDE P,WALAMBE R,MANDAOKAR S,et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion[J]. Applied System Innovation,2021,4(1):1-14.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  45
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-25
  • 修回日期:  2022-10-28
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回