Design of variable frequency control system for local ventilator based on fuzzy theory
-
摘要: 现有局部通风机变频控制方法缺少对瓦斯突变量的预判,当大量瓦斯异常涌出时,调节存在一定滞后性,易导致瓦斯积聚。针对该问题,设计了基于模糊理论的局部通风机变频控制系统。采用瓦斯模糊控制器和风量模糊控制器实现模糊控制,对2个模糊控制器输出的控制量进行比较,根据较大值确定通风机变频情况,当两者相等时以瓦斯模糊控制为主。采用基于瓦斯涌出量的等级划分方法,以最远工况点对应风量为辅助,将通风机频率划分为4个等级。将掘进工作面瓦斯体积分数达到0.8%设置为升频条件,将瓦斯体积分数不大于0.6%或0.5%设置为降频条件,同时设定通风机降频后的供风量为达到降频条件时将回风流瓦斯体积分数控制在0.7%或0.6%所需的供风量。当大量瓦斯异常涌出时,通风机升频以降低瓦斯浓度,同时,通风机供风量可满足更大的瓦斯排放需求,为调整提供一定缓冲,克服变频控制滞后的缺点。试验结果表明:降频条件中瓦斯体积分数为0.5%,降频后供风量为达到降频条件时将回风流瓦斯体积分数控制在0.6%所需供风量,该条件下控制效果较好,但I级供风量略小于最远掘进距离处所需的最小供风量,可新设一个介于I级和II级之间的频率等级I*级,通过提高通风机频率来增加供风量,满足最远掘进距离处最小风量需求。Abstract: The existing variable frequency control method for local ventilator lacks prediction of gas outburst variable. When a large amount of gas emission abnormally, there is a certain lag in regulation, which is easy to lead to gas accumulation. To solve this problem, a variable frequency control system for local ventilator based on fuzzy theory is designed. Fuzzy control is realized by using gas fuzzy controller and air volume fuzzy controller. The control quantity output by two fuzzy controllers is compared. The frequency conversion situation of ventilator is determined according to the larger value. When the two are equal, the fuzzy control of gas is dominant. The classification method based on gas emission is adopted. With the air volume corresponding to the farthest working point as the auxiliary, the ventilator frequency is divided into 4 levels. The gas volume fraction of the heading working face reaching 0.8% is set as the frequency-increasing condition. The gas volume fraction not more than 0.6% or 0.5% is set as the frequency-reducing condition. Moreover, the air supply quantity of the ventilator after frequency reduction is set as the air supply volume required to control the gas volume fraction of return airflow at 0.7% or 0.6% when the frequency reduction condition is achieved. When a large amount of abnormal gas emission, the ventilator is increased in frequency to reduce the gas concentration. At the same time, the air supply volume of the ventilator can meet the greater gas discharge demand. The ventilator can provide a certain buffer for adjustment, and overcome the shortcomings of frequency conversion control lag. The test results show that the gas volume fraction is 0.5% under the condition of frequency reduction. The air supply volume after frequency reduction is the air supply volume required to control the gas volume fraction of return air at 0.6% when the frequency reduction condition is achieved. The control effect is good under this condition. But the air supply volume of level I is slightly less than the minimum air supply volume required at the farthest heading distance. The new frequency level I* between level I and level II can be set. The air supply volume can be increased by increasing the frequency of the ventilator to meet the minimum air supply volume requirement at the farthest heading distance.
-
表 1 瓦斯浓度模糊控制规则
Table 1. Fuzzy control rule for gas concentration
$e_1' $ $e_{{\rm{c}}1}' $ NB NS ZO PS PB NB A A B B C NM B B B C C NS B C C C D ZO C C D D D PS C D D D E PM D D E E E PB D E E E E 表 2 试验设备及仪器
Table 2. The equipments and instruments used in the test
名称 规格型号 对旋轴流局部通风机 FBDNo_5.0/2×7.5 变频器 BPJ−75/690SF 低浓度瓦斯传感器 GJC4 风量传感器 KGF2 无纸记录仪 MIK−R5000C 表 3 达到第1种降频条件时控制c2=0.7%所需的供风量
Table 3. The air supply required to control c2=0.7% when the first frequency reduction condition is achieved
频率等级 供风量/
(m3·min−1)Qh/
(m3·min−1)c1/% Wg/
(m3·min−1)$Q_1' $/
(m3·min−1)IV 255.0 212.5 0.8 1.70 — 0.6 1.28 219.5 III 219.5 182.9 0.8 1.46 — 0.6 1.10 188.5 II 188.5 157.1 0.8 1.26 — 0.6 0.94 161.2 I 161.2 134.3 0.8 1.07 — 0.6 0.81 — 表 4 第1种降频条件下控制量范围
Table 4. The range of control quantity under the first frequency reduction condition
频率变化 控制量U1 控制量U 2 升频 U1≥60 U 2<20 频率不变 40<U 1<60 20≤U 2≤60 降频 U 1≤40 U 2>60 表 5 达到第2种降频条件时控制c2=0.7%所需的供风量
Table 5. The air supply required to control c2=0.7% when the second frequency reduction condition is achieved
频率等级 供风量/
(m3·min−1)Qh/
(m3·min−1)c1/% Wg/
(m3·min−1)$Q_2' $/
(m3·min−1)IV 255.0 212.5 0.8 1.70 — 0.5 1.06 181.7 III 181.7 151.4 0.8 1.21 — 0.5 0.76 130.3 II 130.3 108.6 0.8 0.87 — 0.5 0.54 92.5 I 92.5 77.1 0.8 0.62 — 0.5 0.39 — 表 6 达到第2种降频条件时控制c2=0.6%所需的供风量
Table 6. The air supply required to control c2=0.6% when the second frequency reduction condition is achieved
频率等级 供风量/
(m3·min−1)Qh/
(m3·min−1)c1/% Wg/
(m3·min−1)$Q_3' $/
(m3·min−1)IV 255.0 212.5 0.8 1.70 — 0.5 1.06 212.0 III 212.0 176.7 0.8 1.41 — 0.5 0.88 176.0 II 176.0 146.7 0.8 1.17 — 0.5 0.73 146.0 I 146.0 121.7 0.8 0.97 — 0.5 0.61 — 表 7 第2种降频条件下控制量范围
Table 7. The range of control quantity under the second frequency reduction condition
频率变化 控制量U1 控制量U 2 升频 U1≥60 U2<20 频率不变 30<U1<60 20≤U2≤60 降频 U1≤30 U2>60 -
[1] 杨杰,赵连刚,全芳. 煤矿通风系统现状及智能通风系统设计[J]. 工矿自动化,2015,41(11):74-77. doi: 10.13272/j.issn.1671-251x.2015.11.018YANG Jie,ZHAO Liangang,QUAN Fang. Current situation of coal mine ventilation system and design of intelligent ventilation system[J]. Industry and Mine Automation,2015,41(11):74-77. doi: 10.13272/j.issn.1671-251x.2015.11.018 [2] 周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235. [3] 吴新忠,张芝超,许嘉琳,等. 矿井智能风量调节研究[J]. 工矿自动化,2021,47(4):44-50. doi: 10.13272/j.issn.1671-251x.17693WU Xinzhong,ZHANG Zhichao,XU Jialin,et al. Research on intelligent air volume regulation in mines[J]. Industry and Mine Automation,2021,47(4):44-50. doi: 10.13272/j.issn.1671-251x.17693 [4] 景国勋,刘孟霞. 2015—2019年我国煤矿瓦斯事故统计与规律分析[J]. 安全与环境学报,2022,22(3):1680-1686. doi: 10.13637/j.issn.1009-6094.2021.0092JING Guoxun,LIU Mengxia. Statistics and analysis of coal mine gas accidents in China from 2015 to 2019[J]. Journal of Safety and Environment,2022,22(3):1680-1686. doi: 10.13637/j.issn.1009-6094.2021.0092 [5] BI Qiuping,LI Yucheng,SHEN Cheng. Screening of evaluation index and construction of evaluation index system for mine ventilation system[J]. Sustainability,2021,13(21):1-15. [6] 尹智伟. 煤矿通风系统稳定性分析[J]. 中国石油和化工标准与质量,2019,39(2):163-164. doi: 10.3969/j.issn.1673-4076.2019.02.080YIN Zhiwei. Stability analysis of coal mine ventilation system[J]. China Petroleum and Chemical Standard and Quality,2019,39(2):163-164. doi: 10.3969/j.issn.1673-4076.2019.02.080 [7] 尹伊君,尹丽娜. 变频技术和模糊控制在矿井局部通风机中的应用[J]. 煤矿机械,2007,28(1):139-141. doi: 10.3969/j.issn.1003-0794.2007.01.061YIN Yijun,YIN Lina. Frequency-variable technology and fuzzy control used in mine local ventilator[J]. Coal Mine Machinery,2007,28(1):139-141. doi: 10.3969/j.issn.1003-0794.2007.01.061 [8] 张燕峰. 矿井主节能通风系统的配置及其功能的实现[J]. 机械管理开发,2020,35(11):237-238,271.ZHANG Yanfeng. Configuration and function realization of main energy-saving ventilation system in mine[J]. Mechanical Management and Development,2020,35(11):237-238,271. [9] BABU V R,MAITY T,PRASAD H. Energy saving techniques for ventilation ventilators used in underground coal mines:a survey[J]. Journal of Mining Science,2015,51(5):1001-1008. doi: 10.1134/S1062739115050198 [10] MALEKI S,SOTOUDEH F,SERESHKI F. Application of VENTSIM 3D and mathematical programming to optimize underground mine ventilation network:a case study[J]. Journal of Mining and Environment,2018,9(3):741-752. [11] 常新明,陈国栋,李相,等. 矿井局部通风机变频控制系统的设计研究[J]. 能源与环保,2021,43(5):227-232.CHANG Xinming,CHEN Guodong,LI Xiang,et al. Research on design of frequency conversion control system of mine local fan[J]. China Energy and Environmental Protection,2021,43(5):227-232. [12] 张兴兵. 矿井通风在矿井安全生产中的重要性[J]. 能源与节能,2022(1):159-160. doi: 10.3969/j.issn.2095-0802.2022.01.059ZHANG Xingbing. Importance of mine ventilation in mine safety production[J]. Energy and Energy Conservation,2022(1):159-160. doi: 10.3969/j.issn.2095-0802.2022.01.059 [13] 郝文科. 变频调速技术在煤矿通风机节能的应用研究[J]. 煤炭与化工,2017,40(9):141-142,145.HAO Wenke. Application research of frequency conversion technology in energy saving of mine fan[J]. Coal and Chemical Industry,2017,40(9):141-142,145. [14] 谭晓峰. 变频技术在煤矿节能中的应用探讨[J]. 中国设备工程,2021(4):194-196. doi: 10.3969/j.issn.1671-0711.2021.04.122TAN Xiaofeng. Discussion on application of frequency conversion technology in coal mine energy saving[J]. China Plant Engineering,2021(4):194-196. doi: 10.3969/j.issn.1671-0711.2021.04.122 [15] 刘丹. 基于PLC的矿井通风机变频调速系统设计[J]. 煤矿机械,2020,41(3):181-183. doi: 10.13436/j.mkjx.202003059LIU Dan. Design of mine ventilator variable frequency speed regulation system based on PLC[J]. Coal Mine Machinery,2020,41(3):181-183. doi: 10.13436/j.mkjx.202003059 [16] ZHANG Hongkui, ZHANG Qiulin, ZHE Wang, et al. Design of control and frequency conversion speed regulation system for mine fan[C]. The 2020 International Conference on Advanced Materials and Intelligent Manufacturing & Advanced Steel for Automotive Seminar, Guilin, 2020. [17] 朱培祥,龚柏宇,李海,等. 应用模糊控制的煤矿通风机节能控制装置研制[J]. 自动化仪表,2020,41(8):87-90.ZHU Peixiang,GONG Boyu,LI Hai,et al. Development of energy saving control device for coal mine ventilator with fuzzy control[J]. Process Automation Instrumentation,2020,41(8):87-90. [18] 陈志峰,郭珊珊,徐立军,等. 煤矿局部通风机瓦斯浓度自动调节及节能控制研究[J]. 电气自动化,2021,43(1):23-25. doi: 10.3969/j.issn.1000-3886.2021.01.007CHEN Zhifeng,GUO Shanshan,XU Lijun,et al. Research on gas concentration automatic regulation and energy saving control of local ventilators in coal mines[J]. Electrical Automation,2021,43(1):23-25. doi: 10.3969/j.issn.1000-3886.2021.01.007 [19] 王勇. 矿井局部通风机变频控制方法的探讨[J]. 硅谷,2014,7(14):49-50.WANG Yong. Discussion on frequency conversion control method of mine local ventilator[J]. Silicon Valley,2014,7(14):49-50. [20] 杜岗,马小平,张萍. 煤矿局部通风机转速控制算法研究[J]. 工矿自动化,2020,46(9):69-73,87.DU Gang,MA Xiaoping,ZHANG Ping. Research on speed control algorithm of coal mine local ventilator[J]. Industry and Mine Automation,2020,46(9):69-73,87. [21] 任志玲,林冬,夏博文,等. 基于GASA−SVR的矿井瓦斯涌出量预测研究[J]. 传感技术学报,2017,30(2):247-252. doi: 10.3969/j.issn.1004-1699.2017.02.014REN Zhiling,LIN Dong,XIA Bowen,et al. Research on prediction of mine gas emission quantity based on GASA-SVR[J]. Chinese Journal of Sensors and Actuators,2017,30(2):247-252. doi: 10.3969/j.issn.1004-1699.2017.02.014