留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ISSA−LSTM的浓缩池溢流浓度预测

张洋洋 樊玉萍 马晓敏 董宪姝 金伟 王大卫

张洋洋,樊玉萍,马晓敏,等. 基于ISSA−LSTM的浓缩池溢流浓度预测[J]. 工矿自动化,2022,48(11):63-72.  doi: 10.13272/j.issn.1671-251x.2022060084
引用本文: 张洋洋,樊玉萍,马晓敏,等. 基于ISSA−LSTM的浓缩池溢流浓度预测[J]. 工矿自动化,2022,48(11):63-72.  doi: 10.13272/j.issn.1671-251x.2022060084
ZHANG Yangyang, FAN Yuping, MA Xiaomin, et al. Prediction of overflow concentration of thickener based on ISSA-LSTM[J]. Journal of Mine Automation,2022,48(11):63-72.  doi: 10.13272/j.issn.1671-251x.2022060084
Citation: ZHANG Yangyang, FAN Yuping, MA Xiaomin, et al. Prediction of overflow concentration of thickener based on ISSA-LSTM[J]. Journal of Mine Automation,2022,48(11):63-72.  doi: 10.13272/j.issn.1671-251x.2022060084

基于ISSA−LSTM的浓缩池溢流浓度预测

doi: 10.13272/j.issn.1671-251x.2022060084
基金项目: 国家自然科学基金重点国际(地区)合作研究项目(51820105006);国家自然科学基金面上项目(52074189);国家自然科学基金青年科学基金项目(52004178)。
详细信息
    作者简介:

    张洋洋(1997—),男,安徽阜阳人,硕士研究生,研究方向为选煤智能化,E-mail:1278290544@qq.com

    通讯作者:

    樊玉萍(1988—),女,山西临汾人,副教授,硕士研究生导师,主要从事煤炭清洁高效利用方面的研究工作,E-mail:19880628fyp@163.com

  • 中图分类号: TD94

Prediction of overflow concentration of thickener based on ISSA-LSTM

  • 摘要: 浓缩池溢流浓度监测是实现煤泥水智能加药的关键。针对基于传感器的溢流浓度监测方式会导致絮凝剂调节滞后的问题,提出了一种基于改进麻雀搜索算法(ISSA)−长短期记忆(LSTM)的浓缩池溢流浓度预测方法。首先,对浓缩生产过程中的多参数时间序列进行相关性分析和预处理,得到输入变量。其次,采用多策略联合改进麻雀搜索算法(SSA):引入Tent混沌映射对麻雀种群进行初始化,以保证种群多样性,加快算法收敛速度;用螺旋捕食策略改进SSA的寻优过程,以兼顾局部开发和全局搜索能力;用萤火虫扰动策略对麻雀搜索结果进行扰动,以提高全局搜索能力,避免算法陷入局部最优。然后,采用ISSA优化双层LSTM网络模型的超参数。最后,构建基于ISSA−LSTM的浓缩池溢流浓度预测模型,进行在线监测。实验结果表明:① 选取Ackley函数和Rastrigin函数作为测试函数,得出ISSA的全局寻优性能和收敛速度均优于粒子群优化(PSO)算法、鲸鱼优化算法(WOA)和标准SSA。② 3种改进策略中,螺旋捕食策略对ISSA性能的提升起主导作用,混沌映射和萤火虫扰动策略协调算法的收敛速度和全局搜索能力,进一步提升算法寻优性能。③ 采用ISSA优化LSTM的超参数,解决了依靠主观经验取值时存在的欠拟合或过拟合问题,ISSA−LSTM模型的溢流浓度预测精度达97.26%,高于双层LSTM、SSA−LSTM、最小二乘支持向量机(LSSVM)等模型。④ 数据预处理可以提升模型的精度,降噪后溢流浓度预测精度比降噪前提升了30.25%。

     

  • 图  1  煤泥水浓缩工艺流程

    Figure  1.  Concentration process flow of coal slurry

    图  2  Spearman相关性分析热力图

    Figure  2.  Thermodynamic diagram of Spearman correlation analysis

    图  3  降噪前后入料流量对比

    Figure  3.  Comparison of feed flow before and after noise reduction

    图  4  降噪前后溢流浓度对比

    Figure  4.  Comparison of overflow concentration before and after noise reduction

    图  5  双层LSTM网络结构

    Figure  5.  Structure of double-layer LSTM network

    图  6  Tent映射混沌值与随机值对比

    Figure  6.  Comparison of chaotic value and random value of Tent map

    图  7  ISSA流程

    Figure  7.  Flow of improved sparrow search algorithm

    图  8  基于ISSA−LSTM的浓缩池溢流浓度预测模型

    Figure  8.  Prediction model of overflow concentration of thickener based on ISSA-LSTM

    图  9  Ackley函数

    Figure  9.  Ackley function

    图  10  Rastrigin函数

    Figure  10.  Rastrigin function

    图  11  不同优化算法的Ackley函数收敛曲线

    Figure  11.  Convergence curves of Ackley function of different optimization algorithms

    图  12  不同优化算法的Rastrigin函数收敛曲线

    Figure  12.  Convergence curves of Rastrigin function of different optimization algorithms

    图  13  不同改进策略的Ackley函数收敛曲线

    Figure  13.  Convergence curves of Ackley function of different improvement strategies

    图  14  不同改进策略的Rastrigin函数收敛曲线

    Figure  14.  Convergence curves of Rastrigin function of different improvement strategies

    图  15  适应度曲线对比

    Figure  15.  Comparison of fitness curves

    图  16  不同模型预测结果对比

    Figure  16.  Comparison of prediction results of different models

    表  1  S−G算法参数

    Table  1.   Parameters of S-G algorithm

    参数平滑因子多项式次数
    入料流量0.152
    入料浓度0.101
    加药量0.152
    下载: 导出CSV

    表  2  降噪前后预测结果

    Table  2.   Prediction results before and after noise reduction

    实验数据RMSEMAPE/%
    降噪前492.711 532.99
    降噪后55.788 32.74
    下载: 导出CSV

    表  3  SSA改进策略

    Table  3.   Improvement strategies of sparrow search algorithm

    算法混沌映射螺旋捕食萤火虫扰动
    ISSA1
    ISSA2
    ISSA3
    下载: 导出CSV

    表  4  设备硬件参数

    Table  4.   Equipment hardware parameters

    设备名称DESKTOP−3ER5HIS
    处理器11th Gen Intel(R) Core(TM)
    i7−11800H @ 2.30 GHz
    机带RAM32.0 GB
    系统类型64位操作系统
    下载: 导出CSV

    表  5  超参数设置

    Table  5.   Setting of hyperparameters

    超参数设定值
    第1层神经元个数${M}_{1}$[10,150]
    第2层神经元个数${M}_{2}$[10,60]
    初始学习率$ {I}_{1} $[10−5,1]
    L2正则化因子$ {I}_{2} $[10−6,1]
    最大迭代次数$t_{\rm{max}}$400
    下载: 导出CSV

    表  6  不同模型评价指标对比

    Table  6.   Comparison of evaluation indicator of different models

    模型RMSEMAPE/%
    ISSA−LSTM55.788 32.74
    SSA−LSTM56.237 03.08
    LSSVM74.490 23.67
    双层LSTM81.259 73.98
    下载: 导出CSV
  • [1] 冯甜欣,张晓光,刘景勇,等. 基于云平台的选煤厂环境监测系统[J]. 工矿自动化,2021,47(10):121-126.

    FENG Tianxin,ZHANG Xiaoguang,LIU Jingyong,et al. Environmental monitoring system of coal preparation plant based on cloud platform[J]. Industry and Mine Automation,2021,47(10):121-126.
    [2] 董永胜,陈为高,侯佃平,等. 智能化选煤厂研究与建议[J]. 工矿自动化,2021,47(增刊1):26-31.

    DONG Yongsheng,CHEN Weigao,HOU Dianping,et al. Research and suggestions on intelligent coal preparation plant[J]. Industry and Mine Automation,2021,47(S1):26-31.
    [3] 李朋,张明远,王保强. 分级破碎机智能化技术现状与发展方向[J]. 煤炭工程,2022,54(1):133-136.

    LI Peng,ZHANG Mingyuan,WANG Baoqiang. Status and development trends of intelligent technology of sizing crusher[J]. Coal Engineering,2022,54(1):133-136.
    [4] 陈铭. 基于深度学习的浮选过程智能控制研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ming. Study on the intelligent control of flotation process based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2020.
    [5] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [6] 董丽丽,费城,张翔,等. 基于LSTM神经网络的煤矿突水预测[J]. 煤田地质与勘探,2019,47(2):137-143.

    DONG Lili,FEI Cheng,ZHANG Xiang,et al. Coal mine water inrush prediction based on LSTM neural network[J]. Coal Geology & Exploration,2019,47(2):137-143.
    [7] 刘立邦,杨颂,王志坚,等. 基于改进WOA−LSTM的焦炭质量预测[J]. 化工学报,2022,73(3):1291-1299.

    LIU Libang,YANG Song,WANG Zhijian,et al. Prediction of coke quality based on improved WOA-LSTM[J]. CIESC Journal,2022,73(3):1291-1299.
    [8] 宋刚,张云峰,包芳勋,等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报,2019,45(12):2533-2542. doi: 10.13700/j.bh.1001-5965.2019.0388

    SONG Gang,ZHANG Yunfeng,BAO Fangxun,et al. Stock prediction model based on particle swarm optimization LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(12):2533-2542. doi: 10.13700/j.bh.1001-5965.2019.0388
    [9] 付华,赵俊程,付昱,等. 基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量[J]. 仪器仪表学报,2021,42(4):160-168. doi: 10.19650/j.cnki.cjsi.J2107486

    FU Hua,ZHAO Juncheng,FU Yu,et al. Soft measurement of coal mine gas emission based on quantum-behaved particle swarm optimization and deep learning[J]. Chinese Journal of Scientific Instrument,2021,42(4):160-168. doi: 10.19650/j.cnki.cjsi.J2107486
    [10] 吴磊,康英伟. 基于改进粒子群优化长短时记忆神经网络的脱硫系统SO2预测模型[J]. 热力发电,2021,50(12):66-73.

    WU Lei,KANG Yingwei. Prediction model of SO2 concentration in desulfurization system based on improved particle swarm optimization LSTM[J]. Thermal Power Generation,2021,50(12):66-73.
    [11] LIU Guiyun,SHU Cong,LIANG Zhongwei,et al. A modified sparrow search algorithm with application in 3D route planning for UAV[J]. Sensors,2021,21(4):1224. doi: 10.3390/s21041224
    [12] ZHU Yanlong,YOUSEFI N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm[J]. International Journal of Hydrogen Energy,2021,46(14):9541-9552. doi: 10.1016/j.ijhydene.2020.12.107
    [13] 贾澎涛,苗云风. 基于堆叠LSTM的多源矿压预测模型分析[J]. 矿业研究与开发,2021,41(8):79-82.

    JIA Pengtao,MIAO Yunfeng. Multi-source mine pressure prediction model analysis based on stacked-LSTM[J]. Mining Research and Development,2021,41(8):79-82.
    [14] XING Yin,YUE Jianping,CHEN Chuang,et al. Dynamic displacement forecasting of dashuitian landslide in China using variational mode decomposition and stack long short-term memory network[J]. Applied Sciences,2019,9(15):2951-2962. doi: 10.3390/app9152951
    [15] XUE Jiankai,SHEN Bo. A novel swarm intelligence optimization approach:sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1):22-34.
    [16] 吕鑫,慕晓冬,张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术,2021,43(2):318-327. doi: 10.12305/j.issn.1001-506X.2021.02.05

    LYU Xin,MU Xiaodong,ZHANG Jun. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics,2021,43(2):318-327. doi: 10.12305/j.issn.1001-506X.2021.02.05
    [17] 吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725-734. doi: 10.13247/j.cnki.jcumt.001316

    WU Xinzhong,HAN Zhenghua,WEI Lianjiang,et al. Intelligent on-demand adjustment algorithm and key technology of mine air flow[J]. Journal of China University of Mining & Technology,2021,50(4):725-734. doi: 10.13247/j.cnki.jcumt.001316
    [18] 滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报,2018,50(11):40-49. doi: 10.11918/j.issn.0367-6234.201806096

    TENG Zhijun,LYU Jinling,GUO Liwen,et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology,2018,50(11):40-49. doi: 10.11918/j.issn.0367-6234.201806096
    [19] DEMIDOVA L,GORCHAKOV A V. A study of chaotic maps producing symmetric distributions in the fish school search optimization algorithm with exponential step decay[J]. Symmetry,2020,12(5):784-801. doi: 10.3390/sym12050784
    [20] MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [21] 孙林,黄金旭,徐久成,等. 基于自适应鲸鱼优化算法和容错邻域粗糙集的特征选择算法[J]. 模式识别与人工智能,2022,35(2):150-165. doi: 10.16451/j.cnki.issn1003-6059.202202006

    SUN Lin,HUANG Jinxu,XU Jiucheng,et al. Feature selection based on adaptive whale optimization algorithm and fault-tolerance neighborhood rough sets[J]. Pattern Recognition and Artificial Intelligence,2022,35(2):150-165. doi: 10.16451/j.cnki.issn1003-6059.202202006
    [22] 柳长安,冯雪菱,孙长浩,等. 基于改进麻雀算法的最大2维熵分割方法[J]. 激光技术,2022,46(2):274-282. doi: 10.7510/jgjs.issn.1001-3806.2022.02.020

    LIU Chang'an,FENG Xueling,SUN Changhao,et al. Maximum two-dimensional entropy segmentation method based on improved sparrow algorithm[J]. Laser Technology,2022,46(2):274-282. doi: 10.7510/jgjs.issn.1001-3806.2022.02.020
    [23] 曹通,白艳萍. 基于梯度下降优化的LSTM对空气质量预测研究[J]. 陕西科技大学学报,2020,38(6):159-164. doi: 10.3969/j.issn.1000-5811.2020.06.026

    CAO Tong,BAI Yanping. Study on the prediction of air quality based on LSTM with gradient descent optimization[J]. Journal of Shaanxi University of Science & Technology,2020,38(6):159-164. doi: 10.3969/j.issn.1000-5811.2020.06.026
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  72
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-10-29
  • 网络出版日期:  2022-08-09

目录

    /

    返回文章
    返回