留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面三维激光扫描建模关键技术研究

荣耀 曹琼 安晓宇 温亮 赵云飞

荣耀,曹琼,安晓宇,等. 综采工作面三维激光扫描建模关键技术研究[J]. 工矿自动化,2022,48(10):82-87.  doi: 10.13272/j.issn.1671-251x.2022060054
引用本文: 荣耀,曹琼,安晓宇,等. 综采工作面三维激光扫描建模关键技术研究[J]. 工矿自动化,2022,48(10):82-87.  doi: 10.13272/j.issn.1671-251x.2022060054
RONG Yao, CAO Qiong, AN Xiaoyu, et al. Research on key technologies of 3D laser scanning modeling in fully mechanized working face[J]. Journal of Mine Automation,2022,48(10):82-87.  doi: 10.13272/j.issn.1671-251x.2022060054
Citation: RONG Yao, CAO Qiong, AN Xiaoyu, et al. Research on key technologies of 3D laser scanning modeling in fully mechanized working face[J]. Journal of Mine Automation,2022,48(10):82-87.  doi: 10.13272/j.issn.1671-251x.2022060054

综采工作面三维激光扫描建模关键技术研究

doi: 10.13272/j.issn.1671-251x.2022060054
基金项目: 北京天玛智控科技股份有限公司科研项目(2021TM004-C1);天地科技股份有限公司科技创新创业资金专项项目(2021-TD-QN005)。
详细信息
    作者简介:

    荣耀(1986—),男,吉林通化人,实习研究员,研究方向为光学测量、计算机视觉在煤矿综采自动化中的应用,E-mail:79396754@163.com

  • 中图分类号: TD421

Research on key technologies of 3D laser scanning modeling in fully mechanized working face

  • 摘要: 根据综采工作面三维激光扫描模型中煤壁与顶板交线信息,采煤机可自动调整滚筒截割高度,实现煤炭精准开采。现有技术实现了基于工作面激光点云的割煤顶板线自动提取,但提取结果不能直接应用于数字化自主割煤。针对该问题,提出了综采工作面三维激光扫描建模总体方案,并对煤壁与顶板交线提取、标靶球检测、点云拼接及坐标转换等关键技术进行了研究,实现了三维地质坐标系下煤壁与顶板交线信息的近实时获取,该信息可直接发送给采煤机滚筒,为采煤机下一刀截割提供数据参考。通过巡检机器人完成工作面扫描,获取巡检点云;基于煤壁与顶板交线的曲率特性,采用弦法向量法对煤壁与顶板交线进行粗提取;引入数据点法向量与邻域点法向量的夹角信息,通过阈值排除明显的非煤壁与顶板交线点。由于巡检点云与提取的交线信息均位于局部坐标系,通过定位标靶球检测和配准,完成机头点云、机尾点云与巡检点云的拼接,得到工作面联合点云。根据定位标靶球的三维地质坐标与局部坐标,得到坐标间的转换关系,通过坐标转换将联合点云转换到三维地质坐标系下,从而得到三维地质坐标系下的煤壁与顶板交线信息。井下工业性试验结果表明,采用综采工作面三维激光扫描技术提取煤壁与顶板交线的误差在10 cm以内,所有采样点中误差小于4 cm的采样点占比为50%,误差小于8 cm的采样点占比为96.67%。

     

  • 图  1  综采工作面三维激光扫描建模硬件部署

    Figure  1.  Hardware deployment of 3D laser scanning modeling in fully mechanized working face

    图  2  综采工作面三维激光扫描建模软件流程

    Figure  2.  Software process of 3D laser scanning modeling in fully mechanized working face

    图  3  弦法向量法原理

    Figure  3.  Principle of string and normal vector method

    图  4  机头点云

    Figure  4.  The head point clouds

    图  5  煤壁与顶板交线提取

    Figure  5.  Extraction of coal wall and roof boundary

    图  6  煤壁与顶板交线提取试验结果

    Figure  6.  Test result of extraction of coal wall and roof boundary

    表  1  不同技术方案下煤壁与顶板交线提取结果对比

    Table  1.   Comparison of extraction results of coal wall and roof boundary under different technical schemes

    技术方案占比/%
    误差小于4 cm误差小于8 cm
    文献[10]方案8496
    本文方案5096.67
    下载: 导出CSV
  • [1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. doi: 10.13199/j.cnki.cst.2019.08.001

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36. doi: 10.13199/j.cnki.cst.2019.08.001
    [2] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284. doi: 10.13225/j.cnki.jccs.KJ19.0571

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284. doi: 10.13225/j.cnki.jccs.KJ19.0571
    [3] 李首滨. 智能化开采研究进展与发展趋势[J]. 煤炭科学技术,2019,47(10):102-110. doi: 10.13199/j.cnki.cst.2019.10.012

    LI Shoubin. Progress and development trend of intelligent mining technology[J]. Coal Science and Technology,2019,47(10):102-110. doi: 10.13199/j.cnki.cst.2019.10.012
    [4] 刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81-84,107. doi: 10.3969/j.issn.1006-530X.2017.07.021

    LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81-84,107. doi: 10.3969/j.issn.1006-530X.2017.07.021
    [5] DUNN M,REID P,MALOS J. Development of a protective enclosure for remote sensing applications—case study:laser scanning in underground coal mines[J]. Resources,2020,9(5):1-10.
    [6] 原长锁,王峰. 综采工作面透明化开采模式及关键技术[J]. 工矿自动化,2022,48(3):11-15,31. doi: 10.13272/j.issn.1671-251x.2021110048

    YUAN Changsuo,WANG Feng. Transparent mining mode and key technologies of fully mechanized working face[J]. Journal of Mine Automation,2022,48(3):11-15,31. doi: 10.13272/j.issn.1671-251x.2021110048
    [7] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10. doi: 10.13199/j.cnki.cst.2019.01.001

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10. doi: 10.13199/j.cnki.cst.2019.01.001
    [8] 谷彬,赵云飞. 自主智能割煤技术在榆家梁煤矿43101综采工作面的实践应用[J]. 能源科技,2020,18(7):29-32.

    GU Bin,ZHAO Yunfei. Practical application of autonomous intelligent coal-cutting technology in the fully-mechanized working face 43101 of Yujialiang Coal Mine[J]. Energy Science and Technology,2020,18(7):29-32.
    [9] 李森,王峰,刘帅,等. 综采工作面巡检机器人关键技术研究[J]. 煤炭科学技术,2020,48(7):218-225. doi: 10.13199/j.cnki.cst.2020.07.022

    LI Sen,WANG Feng,LIU Shuai,et al. Study on key technology of patrol robots for fully-mechanized mining face[J]. Coal Science and Technology,2020,48(7):218-225. doi: 10.13199/j.cnki.cst.2020.07.022
    [10] 姜龙飞,毛善君,李梅,等. 基于激光点云的割煤顶板线提取技术研究[J]. 煤炭科学技术,2022,50(6):286-291. doi: 10.13199/j.cnki.cst.BMC20-010

    JIANG Longfei,MAO Shanjun,LI Mei,et al. Research on extraction technology of coal wall and roof boundary based on laser point cloud[J]. Coal Science and Technology,2022,50(6):286-291. doi: 10.13199/j.cnki.cst.BMC20-010
    [11] 张冰容. 基于特征分析的点云数据逆向建模研究[D]. 保定: 华北电力大学, 2021.

    ZHANG Bingrong. Research on reverse modeling of point cloud data based on feature analysis[D]. Baoding: North China Electric Power University, 2021.
    [12] 程旭. 复杂零件三维重建与点云配准技术研究[D]. 武汉: 华中科技大学, 2019.

    CHENG Xu. Research on 3D reconstruction and point cloud registration technology of complex parts[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [13] 李自胜. 点云数据处理与特征识别关键技术研究[D]. 成都: 西南交通大学, 2017.

    LI Zisheng. Studies on key technology of data processing and feature recognition in point clouds[D]. Chengdu: Southwest Jiaotong University, 2017.
    [14] 余汪江. 基于激光雷达的无人驾驶汽车动态障碍物检测与识别研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YU Wangjiang. Research on dynamic obstacles detection and recognition of driverless vehicles based on lidar[D]. Harbin: Harbin Institute of Technology, 2020.
    [15] 童子良. 空间散乱三维点云数据处理与规则曲面点云拟合[D]. 淮南: 安徽理工大学, 2021.

    TONG Ziliang. Spatial scattered 3D point cloud data processing and regular surface point cloud fitting[D]. Huainan: Anhui University of Science and Technology, 2021.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  47
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-09-22
  • 网络出版日期:  2022-09-19

目录

    /

    返回文章
    返回