留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光SLAM的综采工作面实时三维建图方法

亓玉浩 关士远

亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法[J]. 工矿自动化,2022,48(11):139-144.  doi: 10.13272/j.issn.1671-251x.2022060047
引用本文: 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法[J]. 工矿自动化,2022,48(11):139-144.  doi: 10.13272/j.issn.1671-251x.2022060047
QI Yuhao, GUAN Shiyuan. Real-time 3D mapping method of fully mechanized working face based on laser SLAM[J]. Journal of Mine Automation,2022,48(11):139-144.  doi: 10.13272/j.issn.1671-251x.2022060047
Citation: QI Yuhao, GUAN Shiyuan. Real-time 3D mapping method of fully mechanized working face based on laser SLAM[J]. Journal of Mine Automation,2022,48(11):139-144.  doi: 10.13272/j.issn.1671-251x.2022060047

基于激光SLAM的综采工作面实时三维建图方法

doi: 10.13272/j.issn.1671-251x.2022060047
基金项目: 山东省重大科技创新工程项目(2019SDZY01);兖矿集团2019年科学技术项目(YKKJ2019A10MY-R55)。
详细信息
    作者简介:

    亓玉浩(1979—),男,山东枣庄人,高级工程师,主要从事煤炭安全智能高效开采技术及高端装备研究工作,E-mail:dtqyh@aliyun.com

  • 中图分类号: TD421

Real-time 3D mapping method of fully mechanized working face based on laser SLAM

  • 摘要: 移动式建图方法依赖高精度的光纤惯导和里程计进行位姿计算,而在实际工程实践中里程计精度难以满足应用需求,导致获取的工作面三维激光点云不完整。针对该问题,提出了一种基于激光SLAM的综采工作面实时三维建图方法。该方法主要包括激光点云去畸变、特征提取、位姿估计、优化建图等步骤。通过惯导数据消除激光点云的畸变,根据点云中每个点的时间戳检索惯导数据,获得对应每个点的姿态角,如果没有检索到对应姿态角,则采用四元数法进行插补。采用主成分分析法提取点云的几何张量特征,先求解点集的协方差矩阵,再进行特征值分解,得到几何张量特征。计算相邻2帧中特征点之间的距离,构建目标函数,采用Levenberg−Marquardt算法求解目标函数,获取变换矩阵,从而实现位姿估计。采用增量式优化算法,使用GTSAM优化库对历史关键帧与当前关键帧进行联合优化,将获得的所有关键帧点云叠加到一起,即为全局实时三维地图。井下工业性试验结果表明,该方法能实时、完整、高精度地构建全工作面范围的三维地图,最大绝对误差均值为0.19 m,满足综采工作面监控及刮板输送机找直精度需求。

     

  • 图  1  综采工作面三维激光扫描硬件

    Figure  1.  Hardware for three dimensional laser scanning in fully mechanized working face

    图  2  激光雷达线束分布

    Figure  2.  Lidar harness distribution

    图  3  轨道式巡检机器人

    Figure  3.  Orbital inspection robot

    图  4  综采工作面实时三维重建效果

    Figure  4.  Real time 3D reconstruction effect of fully mechanized working face

    表  1  激光点云标记点坐标测量误差分析结果

    Table  1.   The error analysis result of marked points coordinate of laser point cloud m

    标记点实测值测量值1测量值2测量值3
    1(12.76,0.51,1.21)(12.77,0.42,1.27)(12.65,0.45,1.31)(12.69,0.49,1.31)
    2(30.30,0.81,1.31)(30.41,0.78,1.42)(30.55,0.89,1.50)(30.23,0.75,1.41)
    3(47.52, 1.51,1.88)(47.60, 1.32,1.83)(47.78, 1.41,1.71)(47.63, 1.41,1.92)
    4(65.77,2.52,1.23)(65.90,2.48,1.01)(65.88,2.31,1.24)(65.57,2.43,1.38)
    5(83.27,2.21,1.84)(83.42,2.41,1.69)(83.57,2.61,1.54)(83.97,2.41,1.74)
    6(101.98,2.75,1.83)(101.89,2.73,1.79)(101.92,2.77,1.79)(101.79,2.63,1.89)
    7(112.03,2.67,1.92)(112.04,2.69,1.96)(112.05,2.65,1.94)(112.06,2.68,1.95)
    8(129.53,2.69,1.90)(129.41,2.68,1.89)(129.61,2.67,1.87)(129.51,2.67,1.84)
    绝对误差均值0.180.190.14
    下载: 导出CSV
  • [1] 李森,王峰,刘帅,等. 综采工作面巡检机器人关键技术研究[J]. 煤炭科学技术,2020,48(7):218-225. doi: 10.13199/j.cnki.cst.2020.07.022

    LI Sen,WANG Feng,LIU Shuai,et al. Study on key technology of patrol robots for fully-mechanized mining face[J]. Coal Science and Technology,2020,48(7):218-225. doi: 10.13199/j.cnki.cst.2020.07.022
    [2] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12. doi: 10.13272/j.issn.1671-251x.17307

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12. doi: 10.13272/j.issn.1671-251x.17307
    [3] 李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39. doi: 10.13199/j.cnki.cst.2021.04.004

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39. doi: 10.13199/j.cnki.cst.2021.04.004
    [4] 黄曾华,王峰,张守祥. 智能化采煤系统架构及关键技术研究[J]. 煤炭学报,2020,45(6):1959-1972. doi: 10.13225/j.cnki.jccs.zn20.0348

    HUANG Zenghua,WANG Feng,ZHANG Shouxiang. Research on the architecture and key technologies of intelligent coal mining system[J]. Journal of China Coal Society,2020,45(6):1959-1972. doi: 10.13225/j.cnki.jccs.zn20.0348
    [5] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589

    WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589
    [6] 李首滨. 煤炭智能化无人开采的现状与展望[J]. 中国煤炭,2019,45(4):5-12. doi: 10.3969/j.issn.1006-530X.2019.04.001

    LI Shoubin. Present situation and prospect on intelligent unmanned mining at work face[J]. China Coal,2019,45(4):5-12. doi: 10.3969/j.issn.1006-530X.2019.04.001
    [7] CADENA C,CARLONE L,CARRILLO H,et al. Past,present,and future of simultaneous localization and mapping:toward the robust-perception age[J]. IEEE Transactions on Robotics,2016,32(6):1309-1332. doi: 10.1109/TRO.2016.2624754
    [8] BOSSE M,ZLOT R,FLICK P. Zebedee:design of a spring-mounted 3-D range sensor with application to mobile mapping[J]. IEEE Transactions on Robotics,2012,28(5):1104-1119. doi: 10.1109/TRO.2012.2200990
    [9] BOSSE M, ZLOT R. Continuous 3D scan-matching with a spinning 2D laser[C]. IEEE International Conference on Robotics and Automation, Kobe, 2009: 4312-4319.
    [10] PALIERI M,MORRELL B,THAKUR A,et al. LOCUS:a multi-sensor lidar-centric solution for high-precision odometry and 3D mapping in real-time[J]. IEEE Robotics and Automation Letters,2021,6(2):421-428. doi: 10.1109/LRA.2020.3044864
    [11] KAESS M,RANGANATHAN A,DELLAERT F. iSAM:incremental smoothing and mapping[J]. IEEE Transactions on Robotics,2008,24(6):1365-1378. doi: 10.1109/TRO.2008.2006706
    [12] HACKEL T,WEGNER J D,SCHINDLER K. Fast semantic segmentation of 3d point clouds with strongly varying density[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2016,3:177-184.
    [13] CAI Zhipeng,CHIN T-J,BUSTOS A P,et al. Practical optimal registration of terrestrial LiDAR scan pairs[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,147:118-131. doi: 10.1016/j.isprsjprs.2018.11.016
    [14] SEGAL A V, HAEHNEL D, THRUN S. Generalized-ICP[EB/OL]. [2022-05-10]. https://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf.
    [15] RAMEZANI M, KHOSOUSSI K, CATT G, et al. Wildcat: online continuous-time 3D lidar-inertial SLAM[EB/OL]. [2022-05-10]. https://arxiv.org/abs/2205.12595.
    [16] GIAMMARINO L D, ALOISE I, STACHNISS C, et al. Visual place recognition using LiDAR intensity information[EB/OL]. [2022-05-10]. https://arxiv.org/abs/2103.09605.
    [17] MORDOHAI P, MEDIONI G. Tensor voting: a perceptual organization approach to computer vision and machine learning[M]. Cham: Springer, 2006.
    [18] PAN Yue, XIAO Pengchuan, HE Yujie, et al. MULLS: versatile LiDAR SLAM via multi-metric linear least square[C]. IEEE International Conference on Robotics and Automation, Xi'an, 2021.
    [19] KANATANI K. 3D rotations: parameter computation and lie algebra-based optimization[M]. Boca Raton: CRC Press, 2020.
    [20] HUBER P J, RONCHETTI E M. Robust statistics[M]. 2nd Edition. New York: Wiley, 2009.
    [21] GLADUNOVA O P,RODIONOV E D,SLAVSKII V V. Harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric[J]. Doklady Mathematics,2009,80:755-758. doi: 10.1134/S1064562409050329
    [22] OHTSUKA T,FUJII H A. Real-time optimization algorithm for nonlinear receding-horizon control[J]. Automatica,1997,33(6):1147-1154. doi: 10.1016/S0005-1098(97)00005-8
    [23] KHOSOUSSI K, SUKHATME G S, HUANG S, et al. Designing sparse reliable pose-graph SLAM: a graph-theoretic approach[M]//GOLDBERG K, ABBEEL P, BEKRIS K, et al. Algorithmic foundations of robotics XII. Cham: Springer, 2020: 17-32.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  58
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-11-02
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回