Coal mine roadway deformation measurement system based on line scanning principle
-
摘要: 针对采用三维激光扫描技术测量煤矿巷道变形存在有效扫描距离受限、获取的点云密度低、细节缺失严重、测量精度和效率低等问题,提出了一种基于线扫描原理的煤矿巷道变形测量系统。该系统通过巷道测量机器人的测量相机拍摄线扫描激光器投射出的光平面在巷道表面的光条图像;对光条图像使用线结构光光条中心提取技术,获取光条中心坐标,并将光条中心坐标代入通过光平面标定技术拟合的光平面方程,求解出测量相机坐标系下巷道表面的光条图像点云数据;由旋转电动机带动线扫描激光器和测量相机同步转动,获取巷道全部点云数据;采用多组追踪相机拍摄机器人上的靶标图像,实现机器人位姿连续不间断地追踪与测量;结合机器人位姿测量结果对巷道全部点云数据进行拼接,重构煤矿巷道点云;利用点云切片对煤矿巷道点云进行处理,实现煤矿巷道变形快速测量。实验结果表明,该系统测量误差小于7 mm,具有操作简单、灵活性高、测量速度快、测量范围广及测量精度高等特点。Abstract: When 3D laser scanning technology is used in measuring coal mine roadway deformation, there are problems of limited effective scanning distance, low density of acquired point cloud, serious lack of details, low measurement accuracy and low efficiency. In order to solve these problems, a coal mine roadway deformation measurement system based on line scanning principle is proposed. The system shoots a light strip image of a light plane projected by a line scanning laser on the roadway's surface through a measurement robot's measurement camera. The line structured light strip center extraction technology is used for light strip images to obtain the light strip center coordinates. The light strip center coordinates are substituted into the light plane equation fitted by the light plane calibration technology. The light strip image point cloud data of the roadway surface under the measurement camera coordinate system are solved. The rotary motor drives the line scanning laser and the measurement camera to rotate synchronously to obtain all the point cloud data of the roadway. The multiple groups of tracking cameras are used to capture the target image on the robot, so as to realize the continuous tracking and measurement of the robot's pose. Combined with the robot pose measurement results, all the point cloud data of the roadway are spliced to reconstruct the point cloud of the coal mine roadway. The point cloud slice is used to process the point cloud of the coal mine roadway to realize the rapid measurement of coal mine roadway deformation. The experimental results show that the measurement error of the system is less than 7 mm. The system has the characteristics of simple operation, high flexibility, fast measurement speed, wide measurement range and high measurement precision.
-
表 1 测量相机参数标定结果
Table 1. Calibration results of measurement camera parameters
参数 标定结果 测量相机X轴方向焦距长度/mm 747.924 697 190 578 5 测量相机Y轴方向焦距长度/mm 736.549 011 060 198 0 图像主点像素坐标/pixel (691.827 974 297 265 9,
371.736 751 442 043 2)镜头径向畸变系数 (0.086 71,0.965 99,1.622 98) 镜头切向畸变系数 (0.009 27,0.006 03) 表 2 模拟巷道变形测量结果
Table 2. Simulated roadway deformation measurement results
mm 巷道变形前实际值 巷道变形后实际值 巷道变形前测量值 巷道变形后测量值 巷道变形实际值 巷道变形测量值 测量误差 1 800.000 1 780.000 1 837.462 1 810.521 20.000 26.941 6.941 1 780.000 1 750.000 1 810.521 1 773.585 30.000 36.936 6.936 1 750.000 1 710.000 1 773.585 1 726.704 40.000 46.881 6.881 1 710.000 1 650.000 1 726.704 1 660.085 60.000 66.619 6.619 1 650.000 1 570.000 1 660.085 1 574.083 80.000 86.002 6.002 -
[1] 曾正良. 巷道变形破坏的因素及控制方法[J]. 煤炭技术,2008,27(4):141-143.ZENG Zhengliang. Foadway on factors of laneways distorted and control methods reasonable[J]. Coal Technology,2008,27(4):141-143. [2] 姜阔胜,李良和,韩刘帮,等. 基于激光雷达技术的矿井巷道变形在线监测[J]. 北京信息科技大学学报(自然科学版),2020,35(5):1-4.JIANG Kuosheng,LI Lianghe,HAN Liubang,et al. On-line monitoring of mine tunnel deformation based on laser radar technology[J]. Journal of Beijing Information Science and Technology University(Natural Sciences),2020,35(5):1-4. [3] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10. [4] 徐剑坤,彭威,王震威. 巷道变形数字摄影测量实验研究[J]. 煤矿安全,2013,44(10):63-65.XU Jiankun,PENG Wei,WANG Zhenwei. Experimental study on roadway deformation measuring based on digital photogrammetry[J]. Safety in Coal Mines,2013,44(10):63-65. [5] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117.WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117. [6] 郭良林,周大伟,张德民,等. 基于激光点云的巷道变形监测及支护研究[J]. 煤矿安全,2020,51(8):178-183.GUO Lianglin,ZHOU Dawei,ZHANG Demin,et al. Research on deformation monitoring and supporting of tunnel based on laser point cloud[J]. Safety in Coal Mines,2020,51(8):178-183. [7] 金卓,王占利,张自宾. 基于三维激光扫描的矿井开拓巷道围岩变形测量技术研究[J]. 应用激光,2020,40(6):1120-1125.JIN Zhuo,WANG Zhanli,ZHANG Zibin. Research on measurement technology of surrounding rock deformation of mine development roadway based on 3D laser scanning[J]. Applied Laser,2020,40(6):1120-1125. [8] 刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81-84,107.LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81-84,107. [9] 古鑫桐,鲁东明,刁常宇. 复杂背景下棋盘格角点亚像素识别[J]. 计算机工程与应用,2010,46(26):145-147,169.GU Xintong,LU Dongming,DIAO Changyu. Rapid chessboard corner extraction in complex background[J]. Computer Engineering and Applications,2010,46(26):145-147,169. [10] 席剑辉,包辉. 基于改进质心法的激光条纹中心提取算法[J]. 火力与指挥控制,2019,44(5):149-153.XI Jianhui,BAO Hui. Laser stripe center extraction algorithm based on improved centroid method[J]. Fire Control & Command Control,2019,44(5):149-153. [11] 张小艳,王晓强,白福忠,等. 基于改进灰度重心法的光带中心提取算法[J]. 激光与红外,2016,46(5):622-626. doi: 10.3969/j.issn.1001-5078.2016.05.022ZHANG Xiaoyan,WANG Xiaoqiang,BAI Fuzhong,et al. Optical belt center extraction algorithm based on improved grayscale center of gravity method[J]. Laser and Infrared,2016,46(5):622-626. doi: 10.3969/j.issn.1001-5078.2016.05.022 [12] 周富强,张广军,江洁. 线结构光视觉传感器的现场标定方法[J]. 机械工程学报,2004,40(6):169-173. doi: 10.3321/j.issn:0577-6686.2004.06.033ZHOU Fuqiang,ZHANG Guangjun,JIANG Jie. Field calibration method for line structured light vision sensor[J]. Journal of Mechanical Engineering,2004,40(6):169-173. doi: 10.3321/j.issn:0577-6686.2004.06.033 [13] 张瑞峰,舒子芸,南刚雷. 一种新的线结构光标定方法[J]. 激光与光电子学进展,2019,56(22):82-89.ZHANG Ruifeng,SHU Ziyun,NAN Ganglei. Calibration method for line-structured light[J]. Laser & Optoelectronics Progress,2019,56(22):82-89. [14] 郭晶晶,贺赛先. 手持式激光扫描仪激光点云数据拼接方法[J]. 电光与控制,2018,25(1):88-91.GUO Jingjing,HE Saixian. A laser point cloud data splicing method for hand-held laser scanners[J]. Electronics Optics & Control,2018,25(1):88-91. [15] 杨俊哲,姜龙飞,李梅,等. 基于激光点云的掘进工作面三维场景重建技术研究[J]. 煤炭科学技术,2021,49(增刊1):40-45.YANG Junzhe,JIANG Longfei,LI Mei,et al. Research on extraction technology of coal wall and roof boundary based on laser point cloud[J]. Coal Science and Technology,2021,49(S1):40-45.