留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多信息融合和卷积神经网络的行星齿轮箱故障诊断

史志远 滕虎 马驰

史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.  doi: 10.13272/j.issn.1671-251x.2022060011
引用本文: 史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.  doi: 10.13272/j.issn.1671-251x.2022060011
SHI Zhiyuan, TENG Hu, MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.  doi: 10.13272/j.issn.1671-251x.2022060011
Citation: SHI Zhiyuan, TENG Hu, MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.  doi: 10.13272/j.issn.1671-251x.2022060011

基于多信息融合和卷积神经网络的行星齿轮箱故障诊断

doi: 10.13272/j.issn.1671-251x.2022060011
基金项目: 安标国家矿用产品安全标志中心科技创新基金项目(2019ZL004,2019ZL005);国家自然科学基金项目(51975569)。
详细信息
    作者简介:

    史志远(1980—),男,河北承德人,高级工程师,博士,主要从事机电装备安全可靠性及认证理论研究方面的工作,E-mail:shizhiyuancumt@126.com

    通讯作者:

    滕虎(1998—),男,江苏连云港人,硕士,主要研究方向为状态检测与故障诊断,E-mail:ts20050055a31@cumt.edu.cn

  • 中图分类号: TD67

Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network

  • 摘要: 基于机器学习的行星齿轮箱故障诊断方法依赖人工选择特征向量,而特征向量选择的优劣很大程度上决定了诊断方法的准确率。卷积神经网络(CNN)能自动提取特征,但用于行星齿轮箱故障诊断时难以通过单一振动信号对故障做出精确诊断。针对上述问题,提出了一种基于多信息融合和CNN的行星齿轮箱故障诊断方法。对行星齿轮箱的三向(水平径向、垂直径向与轴向)振动信号和声音信号进行数据层融合,将一维的振动信号和声音信号通过并联方式整合为一个二维信号;将二维信号作为CNN的输入,利用多个卷积层和最大池化层进行深度特征提取和信息过滤,最终通过Softmax分类器实现故障分类。搭建了行星齿轮箱故障诊断实验台,采集不同转速和负载工况下行星齿轮箱正常和故障状态的振动信号和声音信号,并输入CNN中进行训练和验证。在相同条件下选取水平径向振动信号、垂直径向振动信号、轴向振动信号、声音信号4种单源信息分别与CNN相结合的方法进行对比,以验证基于多信息融合和CNN的行星齿轮箱故障诊断方法的优越性,实验结果表明:轴向振动信号+CNN和声音信号+CNN 2种方法的故障识别准确率分别为74.07%和75.13%;水平径向振动信号+CNN和垂直径向振动信号+CNN 2种方法的故障识别准确率分别为89.70%和87.09%;基于多信息融合和CNN方法的收敛速度最快,故障识别准确率最高,为93.33%。

     

  • 图  1  CNN结构

    Figure  1.  Structure of CNN

    图  2  传感器布置

    Figure  2.  Layout of sensors

    图  3  行星齿轮箱故障状态

    Figure  3.  Fault states of planetary gearbox

    图  4  行星齿轮箱不同状态的振动时域波形

    Figure  4.  Vibration time domain waveform of planetary gearbox in different status

    图  5  基于多信息融合和CNN的故障识别准确率

    Figure  5.  Fault identification accuracy based on multi-information fusion and CNN

    图  6  基于单源信息和CNN的故障识别准确率

    Figure  6.  Fault identification accuracy based on single source information and CNN

    表  1  CNN参数

    Table  1.   Parameters of CNN

    层类型核尺寸步幅核数量
    卷积层12×7(1,1)32
    最大池化层11×4(1,4)
    卷积层22×7(1,1)64
    最大池化层21×4(1,4)
    卷积层32×7(1,1)128
    最大池化层31×4(1,4)
    下载: 导出CSV

    表  2  数据集

    Table  2.   Data set

    行星齿轮箱状态样本数标签
    正常状态6000
    太阳轮点蚀6001
    太阳轮断齿6002
    齿圈断齿6003
    行星轮磨损6004
    轴承外圈故障6005
    轴承内圈故障6006
    轴承滚珠故障6007
    轴承保持架故障6008
    下载: 导出CSV

    表  3  不同方法的故障识别准确率

    Table  3.   Fault identification accuracy of different methods

    诊断方法测试集准确率/%
    多信息融合+CNN93.33
    水平径向振动信号+CNN89.70
    垂直径向振动信号+CNN87.09
    轴向振动信号+CNN74.07
    声音信号+CNN75.13
    下载: 导出CSV
  • [1] 薛光辉,张军,吉晓冬,等. 井下带式输送机减速器振动故障诊断研究[J]. 工矿自动化,2014,40(6):51-53. doi: 10.13272/j.issn.1671-251x.2014.06.013

    XUE Guanghui,ZHANG Jun,JI Xiaodong,et al. Research of vibration fault diagnosis of underground belt conveyor gear reducer[J]. Industry and Mine Automation,2014,40(6):51-53. doi: 10.13272/j.issn.1671-251x.2014.06.013
    [2] 刘永亮. 煤矿机械齿轮箱故障诊断方法[J]. 工矿自动化,2020,46(11):12-16. doi: 10.13272/j.issn.1671-251x.2020050029

    LIU Yongliang. Fault diagnosis method of coal mine machinery gearbox[J]. Industry and Mine Automation,2020,46(11):12-16. doi: 10.13272/j.issn.1671-251x.2020050029
    [3] 董德浩,李方义,朱兆聚,等. 油液监测技术在推土机变速箱故障诊断中的应用[J]. 工具技术,2015,49(9):89-93. doi: 10.3969/j.issn.1000-7008.2015.09.024

    DONG Dehao,LI Fangyi,ZHU Zhaoju,et al. Application of oil monitoring in fault diagnosis of bulldozer gearbox[J]. Tool Engineering,2015,49(9):89-93. doi: 10.3969/j.issn.1000-7008.2015.09.024
    [4] 谢晓梅,梁国宏. 铁谱分析在煤矿大型设备中的应用[J]. 能源与节能,2016(10):184-185. doi: 10.3969/j.issn.2095-0802.2016.10.088

    XIE Xiaomei,LIANG Guohong. Application of iron spectrum analysis in large equipment of coal mine[J]. Energy and Energy Conservation,2016(10):184-185. doi: 10.3969/j.issn.2095-0802.2016.10.088
    [5] 孙天. 红外测温技术在发动机故障诊断中的应用[J]. 工程机械,2006,37(12):60-61. doi: 10.3969/j.issn.1000-1212.2006.12.019

    SUN Tian. Application of infrared temperature measurement technology in engine fault diagnosis[J]. Construction Machinery and Equipment,2006,37(12):60-61. doi: 10.3969/j.issn.1000-1212.2006.12.019
    [6] FENG Zhipeng,ZHU Wenying,ZHANG Dong. Time-frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds[J]. Mechanical Systems and Signal Processing,2019,128:93-109. doi: 10.1016/j.ymssp.2019.03.036
    [7] TUMER I Y, HUFF E M. Using triaxial accelerometer data for vibration monitoring of helicopter gearboxes[C]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, 2001: 3161-3171.
    [8] 雷亚国, 林京, 何正嘉. 基于多传感器信息融合的行星齿轮箱故障诊断[C]. 第十二届全国设备故障诊断学术会议, 沈阳, 2010: 222-224.

    LEI Yaguo, LIN Jing, HE Zhengjia. Fault diagnosis of planetary gearboxes based on multi-sensor information fusion[C]. The 12th National Academic Conference on Equipment Fault Diagnosis, Shenyang, 2010: 222-224.
    [9] 刘景艳,李玉东,郭顺京. 基于Elman神经网络的齿轮箱故障诊断[J]. 工矿自动化,2016,42(8):47-51.

    LIU Jingyan,LI Yudong,GUO Shunjing. Gear box fault diagnosis based on Elman neural network[J]. Industry and Mine Automation,2016,42(8):47-51.
    [10] 高畅,于忠清,周强. GA−ACO优化BP神经网络在行星齿轮箱故障诊断中的应用[J]. 机械传动,2021,45(3):153-160.

    GAO Chang,YU Zhongqing,ZHOU Qiang. Application of GA-ACO optimized BP neural network in fault diagnosis of planetary gearbox[J]. Journal of Mechanical Transmission,2021,45(3):153-160.
    [11] 李东东,王浩,杨帆,等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用,2018,45(6):80-87,108. doi: 10.3969/j.issn.1673-6540.2018.06.016

    LI Dongdong,WANG Hao,YANG Fan,et al. Fault detection of wind turbine planetary gear box using 1D convolution neural networks and Soft-Max classifier[J]. Electric Machines & Control Application,2018,45(6):80-87,108. doi: 10.3969/j.issn.1673-6540.2018.06.016
    [12] 胡茑庆,陈徽鹏,程哲,等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报,2019,55(7):9-18. doi: 10.3901/JME.2019.07.009

    HU Niaoqing,CHEN Huipeng,CHENG Zhe,et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering,2019,55(7):9-18. doi: 10.3901/JME.2019.07.009
    [13] 吴定海,任国全,王怀光,等. 基于卷积神经网络的机械故障诊断方法综述[J]. 机械强度,2020,42(5):1024-1032. doi: 10.16579/j.issn.1001.9669.2020.05.002

    WU Dinghai,REN Guoquan,WANG Huaiguang,et al. The review of mechanical fault diagnosis methods based on convolutional neural network[J]. Journal of Mechanical Strength,2020,42(5):1024-1032. doi: 10.16579/j.issn.1001.9669.2020.05.002
    [14] ALBAWI S, MOHAMMED T A, ALZAWI S. Understanding of a convolutional neural network[C]. International Conference on Engineering and Technology, 2017: 1-6.
    [15] 耿艳利,宋朋首,林彦伯,等. 采用改进CNN对生猪异常状态声音识别[J]. 农业工程学报,2021,37(20):187-193. doi: 10.11975/j.issn.1002-6819.2021.20.021

    GENG Yanli,SONG Pengshou,LIN Yanbo,et al. Voice recognition of abnormal state of pigs based on improved CNN[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(20):187-193. doi: 10.11975/j.issn.1002-6819.2021.20.021
    [16] KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. [2022-05-25]. https://arxiv.org/abs/1412.6980.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  51
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-03
  • 修回日期:  2022-09-15
  • 网络出版日期:  2022-08-12

目录

    /

    返回文章
    返回