Autonomous positioning method for inspection robots in fully mechanized working face
-
摘要: 目前综采工作面巡检机器人中应用较广泛的是轨道式机器人,机器人经过轨道连接件时会产生抖动,造成惯性导航/里程计组合定位误差增大。针对该问题,在惯性导航/里程计组合导航算法的基础上,采用基于抖动检测的分段滤波方法,实现巡检机器人的自主定位。根据巡检机器人经过轨道连接件时的陀螺仪数据,采用滑动窗口方法对机器人俯仰角速度进行动态分析,通过求导数和判断局部最大上升沿和局部最大下降沿,当最大上升沿与最大下降沿交替出现时,即认为识别到轨道连接件,实现抖动检测,从而将机器人运动状态分为平稳运行状态和抖动状态。当机器人处于平稳运行状态时,陀螺仪和里程计数据均较平稳,此时用惯性导航/里程计组合导航方式进行滤波解算,同时根据陀螺仪数据应该稳定在零值附近的特性来矫正陀螺仪误差;当机器人处于抖动状态时,里程计可能会由于车轮打滑、弹起悬空而产生误差,此时采用纯惯性导航算法消除里程计误差对组合导航定位的影响。实验结果表明,抖动检测算法可准确判断轨道连接件,基于抖动检测的分段滤波方法能有效提升巡检机器人定位精度,平均定位误差小于5 mm,满足综采工作面精确定位要求。Abstract: At present, the track type robot is widely used in the inspection robot of the fully mechanized working face. When the robot passes through the track connection, it will produce jitter. It causes an increase in the positioning error of the inertial navigation/odometer combination. In order to solve this problem, based on the integrated navigation algorithm of inertial navigation/odometer, a piecewise filtering method based on jitter detection is adopted to achieve autonomous positioning of the inspection robot. Based on the gyroscope data of the inspection robot passing through the track connector, a sliding window method is used to dynamically analyze the pitch angular velocity of the robot. The local maximum rising edge and local maximum falling edge are determined by calculating the derivative sum. When the maximum rising edge and maximum falling edge alternately appear, it is considered that the track connector has been recognized. The jitter detection is achieved, thus dividing the robot's motion state into stable operation state and jitter state. When the robot is in a stable operation state, both the gyroscope and odometer data are relatively stable. At this time, the inertial navigation/odometer combination navigation method is used for filtering and solving. The gyroscope error is corrected based on the characteristic that the gyroscope data should be stable near zero. When the robot is in a jitter state, the odometer may generate errors due to wheel slip and bouncing in the air. At this time, a pure inertial navigation algorithm is used to eliminate the impact of odometer errors on the integrated navigation positioning. The experimental results show that the jitter detection algorithm can accurately determine the track connections. The segmented filtering method based on jitter detection can effectively improve the positioning precision of the inspection robot. The average positioning error is less than 5 mm, meeting the precise positioning requirements of the fully mechanized working face.
-
Key words:
- inspection robot /
- orbital robots /
- autonomous positioning /
- jitter detection /
- piecewise filtering /
- inertial navigation /
- odometer
-
表 1 刚性导轨长度解算结果及误差
Table 1. Calculation result and error of rigid guides length
轨道编号 前轮/后轮解算 刚性导轨长度解算结果/m 误差/m 1 前轮 1.540 3 −0.001 7 后轮 1.542 7 0.000 7 2 前轮 1.538 3 −0.003 7 后轮 1.552 1 0.010 1 3 前轮 1.546 6 0.004 6 后轮 1.545 0 0.003 0 -
[1] 宣鹏程,孙稚媛,周东旭,等. 煤矿轨道式带式输送机巡检机器人系统设计[J]. 煤矿机械,2020,41(5):1-3.XUAN Pengcheng,SUN Zhiyuan,ZHOU Dongxu,et al. Design of track inspection robot system for belt conveyor in coal mine[J]. Coal Mine Machinery,2020,41(5):1-3. [2] 邵珠娟,邓晓刚,程豪杰,等. 智能带式输送机巡检机器人在煤矿的应用[J]. 中国煤炭,2020,46(6):35-39.SHAO Zhujuan,DENG Xiaogang,CHENG Haojie,et al. Application of belt conveyor intelligent inspection robot in coal mine[J]. China Coal,2020,46(6):35-39. [3] MORE K S,WOLKERSDORFER C,KANG Ning,et al. Automated measurement systems in mine water management and mine workings-A review of potential methods[J]. Water Resources and Industry,2020(24):1-12. [4] 葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18-27.GE Shirong. Present situation and development direction of coal mine robots[J]. China Coal,2019,45(7):18-27. [5] 杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844-2872.YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844-2872. [6] 徐博,陈崇,王连钊. 基于交互式多模型的车载INS/OD/GPS的定位方法[J]. 中国惯性技术学报,2022,30(1):58-64.XU Bo,CHEN Chong,WANG Lianzhao. Vehicle-mounted INS/OD/GPS integrated navigation based on IMM filtering[J]. Journal of Chinese Inertial Technology,2022,30(1):58-64. [7] SANTERRE R,GEIGER A. Geometry of GPS relative positioning[J]. GPS Solutions,2018,22(2):1-14. [8] TAMAZIN M,NOURELDIN A,KORENBERG M J,et al. Robust fine acquisition algorithm for GPS receiver with limited resources[J]. GPS Solutions,2016,20(1):77-88. doi: 10.1007/s10291-015-0463-3 [9] 陈思,仲启媛,谭立龙,等. 基于RFID辅助的车载SINS/OD定位研究[J]. 电光与控制,2018,25(12):35-39,106.CHEN Si,ZHONG Qiyuan,TAN Lilong,et al. RFID aided vehicle-mounted SINS/OD positioning[J]. Electronics Optics & Control,2018,25(12):35-39,106. [10] OLABY O,HAMADACHE M,SOPER D,et al. Development of a novel railway positioning system using RFID technology[J]. Sensors,2022,22(6):2401. DOI: 10.3390/s22062401. [11] KIA G,RUOTSALAINEN L,TALVITIE J. Toward accurate indoor positioning:an RSS-based fusion of UWB and machine-learning-enhanced WiFi[J]. Sensors,2022,22(9):3204. DOI: 10.3390/s22093204. [12] 牛永刚,窦学丽,殷鹏,等. 基于UWB与激光测距的综采工作面定位系统[J]. 工矿自动化,2021,47(7):125-129,134.NIU Yonggang,DOU Xueli,YIN Peng,et al. Positioning system of fully mechanized working face based on UWB and laser ranging[J]. Industry and Mine Automation,2021,47(7):125-129,134. [13] KRISHNAVENI B V,REDDY K S,REDDY P R. Indoor tracking by adding IMU and UWB using unscented Kalman filter[J]. Wireless Personal Communications:An International Journal,2022,123(4):3575-3596. doi: 10.1007/s11277-021-09304-3 [14] 陆一,魏东岩,纪新春,等. 地磁定位方法综述[J]. 导航定位与授时,2022,9(2):118-130.LU Yi,WEI Dongyan,JI Xinchun,et al. Review of geomagnetic positioning method[J]. Navigation Positioning and Timing,2022,9(2):118-130. [15] 张晓莉,王张哲. 井下巡检机器人实时高精度定位方法[J]. 矿业研究与开发,2021,41(10):158-161.ZHANG Xiaoli,WANG Zhangzhe. Real-time and high-precision positioning method of underground patrol robot[J]. Mining Research and Development,2021,41(10):158-161. [16] 刘送永,崔玉明. 煤矿井下定位导航技术研究进展[J]. 矿业研究与开发,2019,39(7):114-120.LIU Songyong,CUI Yuming. Research progress of positioning and navigation technology in underground coal mine[J]. Mining Research and Development,2019,39(7):114-120. [17] 王世佳,王世博,张博渊,等. 采煤机惯性导航定位动态零速修正技术[J]. 煤炭学报,2018,43(2):578-583.WANG Shijia,WANG Shibo,ZHANG Boyuan,et al. Dynamic zero-velocity update technology to shearer inertial navigation positioning[J]. Journal of China Coal Society,2018,43(2):578-583. [18] MULDER K, CHANG Maiga, ESMAHI L, et al. Inertial navigation algorithms[C]. IEEE International Conference on Pervasive Computing and Communications Workshops, Kona, 2017: 14-17. [19] WANG Peng,ZHONG Qiyuan,TAN Lilong,et al. Design of SINS/LDV/OD autonomous positioning system based on carrier constraints[J]. Journal of Physics:Conference Series,2019,1176(5):52057. DOI: 10.1088/1742-6596/1176/5/052057. [20] 幸伟, 刘洋, 高福隆, 等. 基于里程辅助的低速长航时定位定向组合导航系统设计[C]. 惯性技术发展动态发展方向研讨会, 株洲, 2018: 5-9.XING Wei, LIU Yang, GAO Fulong, et al. Design of low-speed long-time positioning and orientation integrated navigation system based on mileage[C]. Symposium on the Dynamic Development of Inertial Technology, Zhuzhou, 2018: 5-9. [21] SUN Yiding,YANG Gongliu,CAI Qingzhong,et al. A robust in-motion attitude alignment method for odometer-aided strapdown inertial navigation system[J]. Review of Scientific Instruments,2020,91(12):1-15. [22] 张敏,陈安升,陈帅,等. 一种改进的SINS_ODO_ZUPT组合导航算法[J]. 航天控制,2021,39(1):15-19.ZHANG Min,CHEN Ansheng,CHEN Shuai,et al. An improved SINS_ODO_ZUPT integrated navigation algorithm[J]. Aerospace Control,2021,39(1):15-19. [23] 张树生,马静雅,岑强,等. 煤矿综采工作面巡检机器人系统研究[J]. 煤炭科学技术,2019,47(10):136-140.ZHANG Shusheng,MA Jingya,CEN Qiang,et al. Research on inspection robot system for fully-mechanized mining face in coal mine[J]. Coal Science and Technology,2019,47(10):136-140. [24] 陆文涛, 裴文良, 周明静, 等. 一种煤矿综采工作面巡检机器人及系统: CN201820218576.9[P]. 2018-12-28.LU Wentao, PEI Wenliang, ZHOU Mingjing, et al. An inspection robot and system for comprehensive coal mining: CN201820218576.9[P]. 2018-12-28. [25] 崔耀, 杨士军, 李森, 等. 巡检轨道及巡检装置: CN201911039856.9[P]. 2021-04-06.CUI Yao, YANG Shijun, LI Sen, et al. Inspection track and inspection device: CN201911039856.9[P]. 2021-04-06. [26] 张守祥,张学亮,张磊,等. 综采巡检机器人关键技术研究[J]. 煤炭科学技术,2022,50(1):247-255.ZHANG Shouxiang,ZHANG Xueliang,ZHANG Lei,et al. Research on key technology of patrol robot in fully-mechanized mining face[J]. Coal Science and Technology,2022,50(1):247-255. [27] 陈佳裕. 轨道连接件检测机器人的控制与定位算法研究与实现[D]. 深圳: 深圳大学, 2019: 36-41.CHEN Jiayu. Research and implementation of control and positioning algorithm for track connector detecting robot[D]. Shenzhen: Shenzhen University, 2019: 36-41. [28] 武萌,汤霞清,黄湘远. 基于固定里程量测的车载捷联惯导/里程计组合导航算法[J]. 弹箭与制导学报,2016,36(5):21-24.WU Meng,TANG Xiaqing,HUANG Xiangyuan. Vehicle SINS and odometer integrated navigation algorithm based on fixed distance measurement[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2016,36(5):21-24.