留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进支持向量机的微震初至波到时自动拾取方法

李铁牛 胡宾鑫 李化坤 耿文成 郝鹏程 纪旭波 孙增荣 朱峰 张华 阳铖权

李铁牛,胡宾鑫,李化坤,等. 基于改进支持向量机的微震初至波到时自动拾取方法[J]. 工矿自动化,2023,49(3):63-69.  doi: 10.13272/j.issn.1671-251x.2022050081
引用本文: 李铁牛,胡宾鑫,李化坤,等. 基于改进支持向量机的微震初至波到时自动拾取方法[J]. 工矿自动化,2023,49(3):63-69.  doi: 10.13272/j.issn.1671-251x.2022050081
LI Tieniu, HU Binxin, LI Huakun, et al. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation,2023,49(3):63-69.  doi: 10.13272/j.issn.1671-251x.2022050081
Citation: LI Tieniu, HU Binxin, LI Huakun, et al. Automatic picking method of microseismic first arrival time based on improved support vector machine[J]. Journal of Mine Automation,2023,49(3):63-69.  doi: 10.13272/j.issn.1671-251x.2022050081

基于改进支持向量机的微震初至波到时自动拾取方法

doi: 10.13272/j.issn.1671-251x.2022050081
基金项目: 济宁市重点研发计划项目(2021AQGX001);山东省自然科学基金博士基金项目(ZR2019BEE019);山东省自然科学基金重点项目(ZR2020KC012);济南市“高校20条”资助项目(2020GXRC032);济南市“新高校20条”资助项目(2021GXRC037)。
详细信息
    作者简介:

    李铁牛(1997—),男,山东济南人,硕士研究生,研究方向为信息处理技术,E-mail:Tieniul@163.com

    通讯作者:

    胡宾鑫(1979—),男,浙江景宁人,副研究员,博士,研究方向为传感器技术与智能系统,E-mail:bxhu@qlu.edu.cn

  • 中图分类号: TD324

Automatic picking method of microseismic first arrival time based on improved support vector machine

  • 摘要: 微震初至波到时拾取是实现微震震源高精度定位的重要前提。传统的人工拾取方法效率低,而自动拾取方法在低信噪比条件下难以准确拾取初至波到时。针对上述问题,提出了一种基于改进支持向量机(SVM)的微震初至波到时自动拾取方法。首先,对原始微震数据进行归一化处理、线性校正和适当裁剪,将微震数据的振幅、能量和相邻时刻的能量比作为特征对数据标记不同类别;然后采用粒子群优化(PSO)算法和网格搜索法优化SVM的惩罚参数和核函数参数,即先利用PSO算法对参数进行大范围的快速定位,得到初步最优解,再以该解为初始位置重新构建参数搜索区间,设置小步长的网格搜索法对参数进行精细搜寻,得到最优参数,并将该最优参数代入SVM模型进行训练,得到改进SVM模型;最后根据改进的SVM模型对微震数据进行分类识别,定义微震波第1个采样点对应的时刻为初至波到时。采用某矿井下微震监测数据进行实验,结果表明:该方法对微震初至波到时的拾取准确率达96.5%,平均拾取误差为3.8 ms,在低信噪比情况下仍可对微震初至波到时进行准确拾取,拾取精度高于自动拾取方法中常用的长短时窗能量比(STA/LTA)法。

     

  • 图  1  最优分类超平面

    Figure  1.  Optimal classification hyperplane

    图  2  SVM结构

    Figure  2.  Support vector machine structure

    图  3  基于改进SVM的微震初至波到时自动拾取流程

    Figure  3.  Automatic picking process of microseismic first-arrival time based on improved support vector machine

    图  4  数据预处理流程

    Figure  4.  Data preprocessing process

    图  5  网格搜索法参数寻优结果

    Figure  5.  Parameter optimization results of grid search algorithm

    图  6  微震信号加噪后初至波到时拾取结果

    Figure  6.  First-arrival time picking results after microseismic signal plus noise

    图  7  8通道微震初至波到时拾取结果

    Figure  7.  8-channel microseismic first-arrival time picking results

    表  1  微震初至波到时统计结果

    Table  1.   Statistical results of microseismic first-arrival time

    微震
    检波器
    序号
    微震
    信号
    数量/组
    人工
    拾取
    数量/组
    自动拾取
    数量/组
    拾取
    准确率/%
    拾取
    误差/ms
    STA/
    LTA法
    本文
    方法
    STA/
    LTA法
    本文
    方法
    STA/
    LTA法
    本文
    方法
    136035732335190.598.36.53.5
    236035531534388.796.67.34.2
    336035631834689.397.25.92.9
    436035230733587.295.27.44.5
    536035431633989.295.86.73.4
    636035231133488.394.97.55.1
    736035733134892.797.56.93.7
    836035531234187.996.17.14.3
    936035832935391.998.66.32.7
    1036035431633689.394.96.93.9
    1136035330933587.594.97.74.2
    1236035632234890.497.86.63.6
    平均值360354.9317.4342.4 89.496.5 6.93.8
    下载: 导出CSV
  • [1] 孙继平,程继杰. 煤矿冲击地压和煤与瓦斯突出感知报警方法研究[J]. 工矿自动化,2022,48(1):1-6. doi: 10.13272/j.issn.1671-251x.17881

    SUN Jiping,CHENG Jijie. Study on the perception and alarm method of coal mine rock burst and coal and gas outburst[J]. Industry and Mine Automation,2022,48(1):1-6. doi: 10.13272/j.issn.1671-251x.17881
    [2] 马天辉,唐春安,唐烈先,等. 基于微震监测技术的岩爆预测机制研究[J]. 岩石力学与工程学报,2016,35(3):470-483.

    MA Tianhui,TANG Chun'an,TANG Liexian,et al. Mechanism of rock burst forecasting based on micro-seismic monitoring technology[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(3):470-483.
    [3] 刘强,蔡永顺,石峰,等. 微震监测技术在某金矿的应用与研究[J]. 中国矿业,2020,29(增刊1):145-148.

    LIU Qiang,CAI Yongshun,SHI Feng,et al. Application and study of microseismic monitoring technology in a gold mine[J]. China Mining Magazine,2020,29(S1):145-148.
    [4] WAMRIEW D,DORHJIE D B,BOGOEDOV D,et al. Microseismic monitoring and analysis using cutting-edge technology:a key enabler for reservoir characterization[J]. Remote Sensing,2022,14(14):3417-3438. doi: 10.3390/rs14143417
    [5] LIU Fei,MA Tianhui,TANG Chun'an,et al. Prediction of rockburst in tunnels at the Jinping II hydropower station using microseismic monitoring technique[J]. Tunnelling and Underground Space Technology,2018,81:480-493. doi: 10.1016/j.tust.2018.08.010
    [6] 李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(增刊1):83-96. doi: 10.13225/j.cnki.jccs.2016.0852

    LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines:present status and future prospects[J]. Journal of China Coal Society,2017,42(S1):83-96. doi: 10.13225/j.cnki.jccs.2016.0852
    [7] GESRET A,DESASSIS N,NOBLE M,et al. Propagation of the velocity model uncertainties to the seismic event location[J]. Geophysical Journal International,2014(1):52-66.
    [8] 宋广东. 基于光纤传感的微震信号采集和识别与震源定位研究[D]. 北京: 中国矿业大学(北京), 2019.

    SONG Guangdong. Research on acquisition and recognition of microseismic signal and source location based on optical fiber sensing[D]. Beijing: China University of Mining and Technology-Beijing, 2019.
    [9] STEFANO R D,ALDERSONS F,KISSLING E,et al. Automatic seismic phase picking and consistent observation error assessment:application to the Italian seismicity[J]. Geophysical Journal International,2006,165(1):121-134. doi: 10.1111/j.1365-246X.2005.02799.x
    [10] 贾瑞生,谭云亮,孙红梅,等. 低信噪比微震P波震相初至自动拾取方法[J]. 煤炭学报,2015,40(8):1845-1852. doi: 10.13225/j.cnki.jccs.2014.1122

    JIA Ruisheng,TAN Yunliang,SUN Hongmei,et al. Method of automatic detection on micro-seismic P-arrival time under low signal-to-noise ratio[J]. Journal of China Coal Society,2015,40(8):1845-1852. doi: 10.13225/j.cnki.jccs.2014.1122
    [11] 高新成, 杜功鑫, 王莉利, 等. 深度学习在地震初至拾取中的应用综述[J]. 计算机技术与发展, 2022, 32(8): 1-6.

    GAO Xincheng, DU Gongxin, WANG Lili, et al. Application of deep learning in earthquake first break picking[J]. Computer Technology and Development, 2022, 32(8): 1-6.
    [12] LEE M,BYUN J,KIM D,et al. Improved modified energy ratio method using a multi-window approach for accurate arrival picking[J]. Journal of Applied Geophysics,2017,139:117-130. doi: 10.1016/j.jappgeo.2017.02.019
    [13] MARTON S,LUDTKE S,BARTELT C. Explanations for neural networks by neural networks[J]. Applied Sciences,2022,12(3):980-993. doi: 10.3390/app12030980
    [14] 刘佳楠,武杰. 基于全卷积神经网络的地震初至波拾取[J]. 信息技术与网络安全,2018,37(11):58-63.

    LIU Jianan,WU Jie. Seismic first arrival picking based on full convolutional networks[J]. Information Technology and Network Security,2018,37(11):58-63.
    [15] 李洪丽,张晗. 基于长短时均值比法、偏振法和AIC法三种微地震初至拾取方法的对比[J]. 世界地质,2020,39(3):649-655,663. doi: 10.3969/j.issn.1004-5589.2020.03.014

    LI Hongli,ZHANG Han. Comparison of three microseismic first arrival picking methods based on ratio of short-term average and long-term average,polarization method and AIC method[J]. Global Geology,2020,39(3):649-655,663. doi: 10.3969/j.issn.1004-5589.2020.03.014
    [16] 王洪超. 基于Fast−AIC算法的微地震事件初至拾取及自动识别技术研究[D]. 长春: 吉林大学, 2017.

    WANG Hongchao. Research on automatic microseismic event detection and arrival picking based on Fast-AIC algorithm[D]. Changchun: Jilin University, 2017.
    [17] 高煜,胡宾鑫,朱峰,等. 微震初至波到时自动拾取研究[J]. 工矿自动化,2020,46(12):106-110. doi: 10.13272/j.issn.1671-251x.17564

    GAO Yu,HU Binxin,ZHU Feng,et al. Research on automatic picking of microseismic first arrival[J]. Industry and Mine Automation,2020,46(12):106-110. doi: 10.13272/j.issn.1671-251x.17564
    [18] 李亦滔. 基于支持向量机的改进分类算法[J]. 计算机系统应用,2019,28(10):145-151. doi: 10.15888/j.cnki.csa.007080

    LI Yitao. Improved classification algorithm based on support vector machine[J]. Computer System & Applications,2019,28(10):145-151. doi: 10.15888/j.cnki.csa.007080
    [19] 丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1):2-10.

    DING Shifei,QI Bingjuan,TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
    [20] MA Qian, SUN Cong, CUI Baojiang, et al. A novel model for anomaly detection in network traffic based on kernel support vector machine[J]. Computers & Security, 2021, 104. DOI: 10.1016/J.COSE.2021.102215.
    [21] LYU Zhiming,ZHAO Jun,WANG Wei,et al. A multiple surrogates based PSO algorithm[J]. Artificial Intelligence Review,2019,52(4):2169-2190. doi: 10.1007/s10462-017-9601-3
    [22] SUN Yuting,DING Shifei,ZHANG Zichen,et al. An improved grid search algorithm to optimize SVR for prediction[J]. Soft Computing,2021(10):5633-5644.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  87
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2023-03-09
  • 网络出版日期:  2022-10-14

目录

    /

    返回文章
    返回