Research on sorting reliability of cable-driven gangue sorting robot system based on fault tree
-
摘要: 拣矸机器人的分拣可靠性与煤的品质及分拣效率息息相关,对拣矸机器人系统分拣可靠性进行研究十分必要。现有机器人系统可靠性研究主要是针对其结构可靠性进行研究,而没有对其工作任务可靠性即分拣可靠性进行研究。针对该问题,以柔索驱动拣矸机器人系统为研究对象,采用故障树分析法对其分拣可靠性进行研究。首先,从拣矸机器人系统的结构出发,分析了拣矸机器人系统分拣故障的原因,采用演绎法构建拣矸机器人系统的分拣故障树;然后,将故障树底事件发生概率考虑为区间变量,根据区间性质、运算法则和顶事件的概率表达式得到分拣故障树顶事件概率区间参数,结合设计要求计算出反映拣矸机器人系统分拣可靠性的非概率可靠性指标;最后,基于非概率可靠性指标公式及模糊重要度定义,提出了一种区间重要度指标,对分拣故障树底事件的区间重要度进行求解并排序,结果表明分拣可靠性满足拣矸机器人可靠分拣要求,煤矸石流瞬时含矸率增大和工业相机故障是影响其分拣可靠性的重要因素。根据非概率可靠性指标计算结果和区间重要度排序找出了拣矸机器人系统的薄弱环节,并针对薄弱环节提出了3个改进措施:在分拣前对煤矸石流振荡混合;根据识别的矸石信息,智能控制带式输送机带速;在拣矸机器人系统中增加备用工业相机。Abstract: The sorting reliability of the gangue sorting robot is closely related to coal quality and sorting efficiency. It is necessary to study the sorting reliability of the sorting robot system. The existing reliability research of robot system mainly focuses on the structural reliability. There is no research on the task reliability of robot system, namely sorting reliability. In order to solve this problem, taking the cable-driven gangue sorting robot system as the research object, the sorting reliability is studied by fault tree analysis. Firstly, based on the structure of the gangue sorting robot system, the reasons for the sorting failure of the gangue sorting robot system are analyzed. The deductive method is used to construct the sorting fault tree of the gangue sorting robot system. Secondly, the occurrence probability of the bottom event of the fault tree is considered as an interval variable. The probability interval parameter of the top event of the sorting fault tree is obtained according to the interval property, the algorithm and the probability expression of the top event. According to the design requirements, the non-probabilistic reliability index which reflects the sorting reliability of the gangue sorting robot system is calculated. Finally, based on the formula of the non-probabilistic reliability index and the definition of fuzzy importance, an interval importance index is proposed. The interval importance of the events at the bottom of the sorting fault tree is solved and ranked. The results show that the sorting reliability can meet the requirements of sorting reliability of the gangue sorting robot. The increase of instantaneous gangue content in coal gangue flow and the failure of the industrial camera are important factors affecting the sorting reliability. According to the calculation result of the non-probability reliability index and the ranking of interval importance, the weak link of the gangue sorting robot system is found. Three improvement measures are proposed for the weak link. It is suggested to shake and mix the coal gangue flow before sorting. According to the identified gangue information, it is suggested to intelligently control the belt speed of the belt conveyor. It is suggested to add spare industrial camera in the gangue sorting robot system.
-
表 1 拣矸机器人系统分拣故障树底事件
Table 1. Bottom event of sorting fault tree of gangue sorting robot system
事件代号 事件内容 事件代号 事件内容 X1 柔索断裂 X13 继电器故障 X2 柔索变形 X14 熔断器故障 X3 索架破坏 X15 开关故障 X4 定滑轮破坏 X16 编码器通信故障 X5 卷筒破坏 X17 传感器故障 X6 末端抓斗定位不准 X18 控制卡板故障 X7 末端抓斗抓取掉落 X19 工控机故障 X8 末端抓斗空抓 X20 集成电路故障 X9 伺服电动机故障 X21 控制程序无法加载 X10 驱动器故障 X22 控制程序跑飞 X11 变压器故障 X23 瞬时含矸率增大 X12 线路故障 X24 工业相机故障 表 2 底事件发生概率区间变量的上界和下界
Table 2. Upper and lower bounds of the bottom event probability interval
底事件
发生概率区间变量
下界区间变量
上界底事件
发生概率区间变量
下界区间变量
上界q1 2.0×10−5 4.0×10−5 q13 5.8×10−4 7.8×10−4 q2 1.6×10−4 2.4×10−4 q14 5.8×10−4 8.2×10−4 q3 1.8×10−4 2.4×10−4 q15 3.0×10−5 5.0×10−5 q4 2.5×10−4 3.5×10−4 q16 5.4×10−4 7.8×10−4 q5 1.3×10−4 1.7×10−4 q17 2.6×10−4 3.8×10−4 q6 5.0×10−4 7.2×10−4 q18 8.0×10−5 1.6×10−4 q7 1.5×10−4 1.9×10−4 q19 3.5×10−4 5.5×10−4 q8 1.0×10−5 3.0×10−5 q20 1.2×10−3 1.6×10−3 q9 5.0×10−4 7.0×10−4 q21 6.0×10−4 1.8×10−3 q10 5.9×10−4 8.1×10−4 q22 2.5×10−4 4.5×10−4 q11 4.0×10−4 6.0×10−4 q23 1.4×10−3 2.6×10−3 q12 1.0×10−5 3.0×10−5 q24 4.2×10−3 4.8×10−3 表 3 底事件区间重要度计算结果
Table 3. Calculation results of the interval importance degree of the bottom event
底事件 Ei Di 底事件 Ei Di X1 2.95×10−5 9.77×10−6 X13 6.70×10−4 9.70×10−5 X2 1.97×10−4 3.89×10−5 X14 6.89×10−4 1.16×10−4 X3 2.07×10−4 2.90×10−5 X15 3.94×10−5 9.75×10−6 X4 2.95×10−4 4.85×10−5 X16 6.50×10−4 1.16×10−4 X5 1.48×10−4 1.93×10−5 X17 3.15×10−4 5.83×10−5 X6 6.01×10−4 1.07×10−4 X18 1.18×10−4 3.91×10−5 X7 1.67×10−4 1.93×10−5 X19 4.43×10−4 9.75×10−5 X8 1.97×10−5 9.80×10−6 X20 1.38×10−3 1.94×10−4 X9 5.91×10−4 9.71×10−5 X21 6.90×10−4 9.70×10−5 X10 6.90×10−4 1.07×10−4 X22 3.45×10−4 9.77×10−5 X11 4.92×10−4 9.73×10−5 X23 1.97×10−3 5.88×10−4 X12 1.97×10−5 9.80×10−6 X24 4.45×10−3 2.87×10−4 -
[1] HOU Wei. Identification of coal and gangue by feed-forward neural network based on data analysis[J]. International Journal of Coal Preparation and Utilization,2019,39(1):33-43. doi: 10.1080/19392699.2017.1290609 [2] 来文豪,周孟然,胡锋,等. 基于多光谱成像和改进YOLO v4的煤矸石检测[J]. 光学学报,2020,40(24):72-80.LAI Wenhao,ZHOU Mengran,HU Feng,et al. Coal gangue detection based on multi-spectral imaging and improved YOLO v4[J]. Acta Optica Sinica,2020,40(24):72-80. [3] LI Man,DUAN Yong,HE Xianli,et al. Image positioning and identification method and system for coal and gangue sorting robot[J]. International Journal of Coal Preparation and Utilization,2020,40(4):1759-1777. [4] SUN Zhiyuan, HUANG Linlin, JIA Ruiqing. Coal and gangue separating robot system based on computer vision[J]. Sensors, 2021, 21(4): 1349. DOI: 10.3390/s21041349. [5] 夏晶,张昊,周世宁,等. 煤矸分拣机器人动态拣取避障路径规划[J]. 煤炭学报,2021,46(增刊1):570-577. doi: 10.13225/j.cnki.jccs.2020.1448XIA Jing,ZHANG Hao,ZHOU Shining,et al. Dynamic picking and obstacle avoidance path planning of coal gangue sorting robot[J]. Journal of China Coal Society,2021,46(S1):570-577. doi: 10.13225/j.cnki.jccs.2020.1448 [6] 赵明辉. 双臂并联煤矸石分拣机器人及其轨迹规划研究[J]. 工矿自动化,2020,46(9):57-63. doi: 10.13272/j.issn.1671-251x.2020040059ZHAO Minghui. Research on dual-arm parallel coal gangue sorting robot and its trajectory planning[J]. Industry and Mine Automation,2020,46(9):57-63. doi: 10.13272/j.issn.1671-251x.2020040059 [7] LIU Peng, MA Hongwei, ZHANG Xuhui, et al. On the equivalent position workspace for a coal gangue picking robot [J]. Journal of Physics: Conference Series, 2019, 1267(1). DOI: 10.1088/1742-6596/1267/1/012078. [8] WANG Zixiang,XIE Shuxin,CHEN Guodong,et al. An online flexible sorting model for coal and gangue based on multi-information fusion[J]. IEEE Access,2021,9:90816-90827. doi: 10.1109/ACCESS.2021.3090780 [9] 刘鹏,马宏伟,乔心州,等. 柔索驱动拣矸机器人最小索拉力等值曲面研究[J]. 西安科技大学学报,2020,40(5):797-804. doi: 10.13800/j.cnki.xakjdxxb.2020.0507LIU Peng,MA Hongwei,QIAO Xinzhou,et al. On the contour surfaces of minimum tensions for a cable-driven coal-gangue picking gangue robot[J]. Journal of Xi'an University of Science and Technology,2020,40(5):797-804. doi: 10.13800/j.cnki.xakjdxxb.2020.0507 [10] 曹现刚,吴旭东,王鹏,等. 面向煤矸分拣机器人的多机械臂协同策略[J]. 煤炭学报,2019,44(增刊2):763-774. doi: 10.13225/j.cnki.jccs.2019.0734CAO Xiangang,WU Xudong,WANG Peng,et al. Collaborative strategy of multi-manipulator for coal-gangue sorting robot[J]. Journal of China Coal Society,2019,44(S2):763-774. doi: 10.13225/j.cnki.jccs.2019.0734 [11] 曹现刚,费佳浩,王鹏,等. 基于多机械臂协同的煤矸分拣方法研究[J]. 煤炭科学技术,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002CAO Xiangang,FEI Jiahao,WANG Peng,et al. Study on coal-gangue sorting method based on multi-manipulator collaboration[J]. Coal Science and Technology,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002 [12] 王鹏,曹现刚,夏晶,等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化,2019,45(9):47-53. doi: 10.13272/j.issn.1671-251x.17442WANG Peng,CAO Xiangang,XIA Jing,et al. Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J]. Industry and Mine Automation,2019,45(9):47-53. doi: 10.13272/j.issn.1671-251x.17442 [13] JIANG Guangjun,GAO Le. Reliability analysis of martial arts arena robot systems based on fuzzy set theory[J]. Journal of Mechanical Science and Technology,2018,32(11):5069-5077. doi: 10.1007/s12206-018-1003-1 [14] 陈霞. 蠕动式缆索机器人模糊故障树分析与应用[J]. 机械设计,2015,32(8):31-35. doi: 10.13841/j.cnki.jxsj.2015.08.007CHEN Xia. Analysis and application of the worming cable robot fuzzy fault tree[J]. Journal of Machine Design,2015,32(8):31-35. doi: 10.13841/j.cnki.jxsj.2015.08.007 [15] 韩雪,訾斌,孙辉辉. 可缠绕式混合驱动柔索并联机器人可靠性分析[J]. 机械设计与制造,2015(4):155-158,162. doi: 10.3969/j.issn.1001-3997.2015.04.043HAN Xue,ZI Bin,SUN Huihui. The reliability analysis of the winding hybrid-driven cable parallel manipulator[J]. Machinery Design & Manufacture,2015(4):155-158,162. doi: 10.3969/j.issn.1001-3997.2015.04.043 [16] FERSGUSON T A, LU Lixuan. Fault tree analysis for an inspection robot in a nuclear power plant[EB/OL]. [2022-03-11]. https://iopscience.iop.org/article/10.1088/1757-899X/235/1/012003/meta. [17] FAZLOLLAHTABAR H,NIAKI S. Integration of fault tree analysis,reliability block diagram and hazard decision tree for industrial robot reliability evaluation[J]. Industrial Robot,2017,44(6):754-764. doi: 10.1108/IR-06-2017-0103 [18] BALASUNDARAM M,MUTHUSWAMY S. Implementation of role assignment and fault tree analysis for multi robot interaction[J]. International Journal of Robotics and Automation,2017,32(3):214-223. [19] 周长聪, 常琦, 周春苹, 等. 基于非概率模型的飞机襟翼故障树分析[J]. 清华大学学报(自然科学版), 2021, 61(6): 636-642.ZHOU Changcong, CHANG Qi, ZHOU Chunping,et al. Fault tree analysis of an aircraft flap system based on a non-probability model[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(6): 636-642. [20] 方坤,陶军. 液压ABS系统的故障树分析[J]. 液压与气动,2020,44(2):155-161.FANG Kun,TAO Jun. Fault tree analysis of hydraulic ABS system[J]. Chinese Hydraulics and Pneumatics,2020,44(2):155-161. [21] 庞楠,贾鹏,王立权,等. 水下连接器结构可靠性分析[J]. 哈尔滨工程大学学报,2021,42(1):68-73.PANG Nan,JIA Peng,WANG Liquan,et al. Reliability analysis of subsea connector structure[J]. Journal of Harbin Engineering University,2021,42(1):68-73. [22] 罗承昆,陈云翔,何桢,等. 基于故障树分析的航空装备体系结构贡献率评估方法[J]. 国防科技大学学报,2021,43(1):155-162.LUO Chengkun,CHEN Yunxiang,HE Zhen,et al. Evaluation method of aviation equipment's structure contribution rate to system-of-system based on fault tree analysis[J]. Journal of National University of Defense Technology,2021,43(1):155-162. [23] CHENG S R,LIU B S,HSU B M,et al. Fault-tree analysis for liquefied natural gas terminal emergency shutdown system[J]. Expert Systems with Applications,2009,36(9):11918-11924.