Optimization of coal loading performance of shearer screw drum
-
摘要: 螺旋滚筒是采煤机截割煤岩的直接机构,螺旋滚筒几何参数和截割策略的优化设计对提高滚筒装煤性能有重要影响。现有基于有限元和二维离散元法的螺旋滚筒优化设计大多基于单一或部分因素,未综合考虑多设计变量对螺旋滚筒装煤性能的影响,难以同时得到几何参数及运动学参数最优解。针对该问题,基于煤的物理力学特性参数测试结果,利用离散元分析软件EDEM构建采煤机螺旋滚筒截割煤壁耦合模型,对采煤机螺旋滚筒的装煤性能进行数值模拟,采用单因素法分析了螺旋滚筒螺旋升角、直径、筒毂直径、截割深度、转速及牵引速度对装煤性能的影响;基于离散元分析结果设计螺旋滚筒三因素三水平正交试验,通过极差分析得出几何参数中滚筒直径、筒毂直径、螺旋升角,运动学参数中截割深度、滚筒转速、牵引速度对螺旋滚筒装煤性能的影响依次减小;根据正交试验结果得出螺旋滚筒最优几何参数方案为13°螺旋升角、1 300 mm滚筒直径、475 mm筒毂直径,最优截割策略为600 mm截割深度、58 r/min滚筒转速、8 m/min牵引速度,最优参数下螺旋滚筒装煤率为76.39%,较优化前提高了15.82%。Abstract: The screw drum is the direct mechanism of the shearer cutting coal and rock. The optimization design of geometric parameters and cutting strategy of screw drum has an important impact on improving coal loading performance of drum. The existing optimization design schemas of the screw drum based on the finite element method and the two-dimensional discrete element method are mostly based on a single factor or part factors. The influence of multiple design variables on the coal loading performance of the screw drum is not comprehensively considered. It is difficult to obtain the optimal solution of the geometric parameters and kinematic parameters simultaneously. In order to solve this problem, based on the test results of the physical and mechanical properties of coal, the coupling model of the shearer's screw drum cutting coal wall is established by using discrete element analysis software EDEM. The numerical simulation of coal loading performance of the shearer's screw drum is carried out. The single-factor method is used to analyze the influence of the spiral angle, diameter, hub diameter, cutting depth, drum rotation rate and traction speed of the screw drum on the coal loading performance. The three factors and three levels orthogonal test of the screw drum is designed based on the results of discrete element analysis. Through range analysis, the influence of geometric parameters of drum diameter, drum hub diameter and spiral rise angle, and kinematic parameters of cutting depth, drum rotation rate and traction speed on the coal loading performance of the screw drum is reduced in turn. According to the orthogonal test results, the optimal geometric parameters of the screw drum are 13° spiral rise angle, 1300 mm drum diameter and 475 mm drum hub diameter. The optimal cutting strategy is that the cutting depth is 600 mm, the drum rotation rate is 58 r/min, and the traction speed is 8 m/min. Under the optimal parameters, the coal loading rate of the screw drum is 76.39%, which is 15.82% higher than before.
-
Key words:
- shearer /
- screw drum /
- coal loading performance optimization /
- discrete element method /
- orthogonal test
-
表 1 正交试验因素水平
Table 1. Factor levels of orthogonal test
设计变量 符号 水平 1 2 3 螺旋升角/(°) a 11 13 15 滚筒直径/mm b 1050 1150 1300 筒毂直径/mm c 475 525 570 截割深度/mm d 600 700 800 滚筒转速 /(r·min−1) e 54 58 62 牵引速度/(m·min−1) f 7 8 9 表 2 几何因素正交试验结果
Table 2. Orthogonal test results of geometric factors
试验
编号因素水平 装煤率/% a b c 1 a1 b1 c1 61.47 2 a1 b2 c2 58.07 3 a1 b3 c3 63.87 4 a2 b1 c2 59.06 5 a2 b2 c3 57.54 6 a2 b3 c1 74.23 7 a3 b1 c3 58.08 8 a3 b2 c1 67.48 9 a3 b3 c2 71.38 表 3 几何因素极差分析
Table 3. Range analysis of geometrical factors
指标 a/(°) b/mm c/mm L1 183.41 178.61 203.18 L2 190.83 183.09 188.51 L3 196.94 209.48 179.49 l1 61.14 59.54 67.73 l2 63.61 61.03 62.84 l3 65.65 69.83 59.83 极差 4.51 10.29 7.90 表 4 运动学因素正交试验结果
Table 4. Orthogonal test results of kinematic factors
试验
编号因素水平 装煤率/% d e f 1 d1 e1 f1 61.47 2 d1 e2 f2 62.66 3 d1 e3 f3 61.94 4 d2 e2 f1 60.13 5 d2 e3 f2 61.37 6 d2 e1 f3 58.25 7 d3 e3 f1 57.72 8 d3 e1 f2 56.54 9 d3 e2 f3 55.82 表 5 运动学因素极差分析
Table 5. Range analysis of kinematic factors
指标 d/mm e/(r·min−1) f/(m·min−1) L1 186.07 176.26 179.32 L2 179.75 178.61 180.57 L3 170.08 181.03 176.01 l1 62.02 58.75 59.77 l2 59.92 59.54 60.19 l3 56.69 60.34 58.67 极差 5.33 1.59 1.52 -
[1] 赵丽娟,王雅东,刘旭南. 薄煤层采煤机强力螺旋滚筒设计研究[J]. 机械科学与技术,2019,38(11):1712-1719. doi: 10.13433/j.cnki.1003-8728.20190053ZHAO Lijuan,WANG Yadong,LIU Xu'nan. Design and simulation on powerful screw drum of thin coal seam shearer[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(11):1712-1719. doi: 10.13433/j.cnki.1003-8728.20190053 [2] 高魁东. 薄煤层滚筒采煤机装煤性能研究[D]. 徐州: 中国矿业大学, 2014.GAO Kuidong. Study on coal-loading performance of thin coal seam shearer[D]. Xuzhou: China University of Mining and Technology, 2014. [3] 曹杨,王灿,薛玉刚. 采煤机螺旋滚筒装载机理分析[J]. 煤矿机械,2015,36(9):127-128.CAO Yang,WANG Can,XUE Yugang. Mechanism analysis of shearer screw drum loading[J]. Coal Mine Machinery,2015,36(9):127-128. [4] 王灿. 工作面倾角对采煤机滚筒装煤效果影响研究[J]. 煤矿机械,2021,42(6):56-57. doi: 10.13436/j.mkjx.202106018WANG Can. Research on influence of working face inclination angle on coal loading effect of shearer drum[J]. Coal Mine Machinery,2021,42(6):56-57. doi: 10.13436/j.mkjx.202106018 [5] 徐盼盼,刘送永,刘洋洋. 薄煤层采煤机鼓形滚筒装煤性能研究[J]. 煤炭科学技术,2020,48(3):93-99. doi: 10.13199/j.cnki.cst.2020.03.009XU Panpan,LIU Songyong,LIU Yangyang. Research on coal loading performance of globoid drum in thin coal seam shearer[J]. Coal Science and Technology,2020,48(3):93-99. doi: 10.13199/j.cnki.cst.2020.03.009 [6] LIU Songyong,DU Changlong,ZHANG Jiajia,et al. Parameters analysis of shearer drum loading performance[J]. Mining Science and Technology,2011,21(5):621-624. [7] 田震,赵丽娟,张建军,等. 复杂煤层赋存条件下螺旋滚筒力学行为研究[J]. 机械科学与技术,2019,38(7):1041-1047. doi: 10.13433/j.cnki.1003-8728.2019.20180283TIAN Zhen,ZHAO Lijuan,ZHANG Jianjun,et al. Study on mechanical behaviour of spiral drum under complex condition of coal seam[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(7):1041-1047. doi: 10.13433/j.cnki.1003-8728.2019.20180283 [8] 田震,赵丽娟,刘旭南,等. 基于离散元法的螺旋滚筒装煤性能研究[J]. 煤炭学报,2017,42(10):2758-2764. doi: 10.13225/j.cnki.jccs.2017.0324TIAN Zhen,ZHAO Lijuan,LIU Xunan,et al. Loading performance of spiral drum based on discrete element method[J]. Journal of China Coal Society,2017,42(10):2758-2764. doi: 10.13225/j.cnki.jccs.2017.0324 [9] 王刚,袁康,蒋宇静,等. 基于颗粒离散元法的锚固节理剪切行为宏细观研究[J]. 煤炭学报,2014,39(12):2381-2389. doi: 10.13225/j.cnki.jccs.2013.1847WANG Gang,YUAN Kang,JIANG Yujing,et al. Macro-micro mechanical study on bolted joint subjected to shear loading based on DEM[J]. Journal of China Coal Society,2014,39(12):2381-2389. doi: 10.13225/j.cnki.jccs.2013.1847 [10] 赵丽娟,范佳艺,刘雪景,等. 采煤机螺旋滚筒动态截割过程研究[J]. 机械科学与技术,2019,38(3):386-391. doi: 10.13433/j.cnki.1003-8728.20180188ZHAO Lijuan,FAN Jiayi,LIU Xuejing,et al. Exploring dynamic cutting process of shearer's drum[J]. Mechanical Science and Technology for Aerospace Engineering,2019,38(3):386-391. doi: 10.13433/j.cnki.1003-8728.20180188 [11] 刘春生,于念君,张艳军. 极薄煤层采煤机滚筒的装煤过程与性能评价[J]. 黑龙江科技大学学报,2020,30(1):86-93. doi: 10.3969/j.issn.2095-7262.2020.01.015LIU Chunsheng,YU Nianjun,ZHANG Yanjun. Loading process and performance evaluation of shearer drum for extremely thin coal seams[J]. Journal of Heilongjiang University of Science and Technology,2020,30(1):86-93. doi: 10.3969/j.issn.2095-7262.2020.01.015 [12] 马旭东,赵颖,刘元文,等. 基于正交试验的U型铜材模具参数优化[J]. 塑性工程学报,2022,29(1):110-118. doi: 10.3969/j.issn.1007-2012.2022.01.016MA Xudong,ZHAO Ying,LIU Yuanwen,et al. Parameter optimization of U-shaped copper mold based on orthogonal test[J]. Journal of Plasticity Engineering,2022,29(1):110-118. doi: 10.3969/j.issn.1007-2012.2022.01.016 [13] 燕浩,刘梅清,梁兴,等. 基于正交试验大型轴流泵空化特性的数值模拟[J]. 华中科技大学学报(自然科学版),2014,42(12):35-40.YAN Hao,LIU Meiqing,LIANG Xing,et al. Numerical simulation on cavitation characteristics of large-scale axial-flow pumps based on orthogonal experiment[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2014,42(12):35-40.