留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进反馈神经网络的煤矸石图像分类模型

闫洪霖

闫洪霖. 基于改进反馈神经网络的煤矸石图像分类模型[J]. 工矿自动化,2022,48(8):50-55, 113.  doi: 10.13272/j.issn.1671-251x.2022050026
引用本文: 闫洪霖. 基于改进反馈神经网络的煤矸石图像分类模型[J]. 工矿自动化,2022,48(8):50-55, 113.  doi: 10.13272/j.issn.1671-251x.2022050026
YAN Honglin. Coal and gangue image classification model based on improved feedback neural network[J]. Journal of Mine Automation,2022,48(8):50-55, 113.  doi: 10.13272/j.issn.1671-251x.2022050026
Citation: YAN Honglin. Coal and gangue image classification model based on improved feedback neural network[J]. Journal of Mine Automation,2022,48(8):50-55, 113.  doi: 10.13272/j.issn.1671-251x.2022050026

基于改进反馈神经网络的煤矸石图像分类模型

doi: 10.13272/j.issn.1671-251x.2022050026
详细信息
    作者简介:

    闫洪霖(2001—),男,陕西富平人,主要研究方向为智能机器人、电力系统及自动化,E-mail:1344827177@qq.com

  • 中图分类号: TD948

Coal and gangue image classification model based on improved feedback neural network

  • 摘要: 现有的基于深度学习的图像分类方法存在分类模型参数量大、耗时长、分类精度低,难以在模型轻便和分类精度上达到折衷。针对上述问题,提出了一种基于改进反馈神经网络(Feedback−Net)的煤矸石图像分类模型。在ResNet50模型的基础上搭建Feedback−Net模型,通过在ResNet50模型搭建反馈通路,将高低阶信息进行融合,从而提升特征的表现能力。针对搭建的Feedback−Net模型在分类准确率提升的同时耗时有所增加的问题,将Feedback−Net模型中的方形卷积核改进为非对称卷积块(ACB),通过叠加融合的方式增加卷积核的特征提取能力;将参数量最多的全连接层转换为全局协方差池化(GCP),以降低网络参数量。通过模拟煤矿井下煤矸石分拣环境,以验证Feedback−Net模型和改进Feedback−Net模型(Feedback−Net+ACB和Feedback−Net+ACB+GCP)的性能。结果表明:① Feedback−Net模型在精度上高于ResNet50模型,损失值略低于ResNet50模型。② Feedback−Net模型训练精度较ResNet50模型提升了1.20%,测试精度提升了1.21%,但训练耗时较ResNet50模型增加了0.22%。③ Feedback−Net+ACB+GCP模型精度高于Feedback−Net和Feedback−Net+ACB模型,其收敛速度在3个模型中最快,具有最优性能。④ Feedback−Net+ACB模型测试精度、训练精度均较Feedback−Net模型提升了1.39%,且耗时减少了15.53 min,Feedback−Net+ACB+GCP模型训练精度、测试精度较Feedback−Net模型分别提升了1.62%,1.59%,耗时缩短了1.12%;Feedback−Net+ACB+GCP模型耗时较Feedback−Net+ACB模型减少了50.38 min,性能更加优越。

     

  • 图  1  ResNet50模型结构

    Figure  1.  ResNet50 model structure

    图  2  stage结构

    Figure  2.  Stage structure

    图  3  stage1反馈连接结构

    Figure  3.  Stage1 feedback connection structure

    图  4  ACB结构

    Figure  4.  Asymmetric convolution block structure

    图  5  Feedback−Net模型

    Figure  5.  Feedback-Net model

    图  6  改进Feedback−Net模型

    Figure  6.  Improved Feedback-Net Model

    图  7  煤矸石数据集

    Figure  7.  Coal and gangue dataset

    图  8  Feedback−Net模型中不同卷积层级特征提取

    Figure  8.  Feature extraction of different convolution levelsin the Feedback-Net model

    图  9  Feedback−Net模型与ResNet50模型训练精度收敛过程

    Figure  9.  Training precision convergence process of the feedback-Net model and the ResNet50 model

    图  10  Feedback−Net模型与ResNet50模型的损失值收敛过程

    Figure  10.  The Loss value convergence process of the Feedback-Net model and the ResNet50 model

    图  11  各模型损失值收敛过程

    Figure  11.  Convergence process of the loss value for each model

    图  12  各模型训练精度收敛过程

    Figure  12.  Training precision convergence process of each model

    表  1  Feedback−Net模型与ResNet50模型性能对比

    Table  1.   Performance comparison between the Feedback-Net model and the ResNet50 model

    模型评价指标
    训练耗时/min训练精度测试精度
    ResNet509 963.420.934 50.934 5
    Feedback−Net9 985.350.945 70.945 7
    下载: 导出CSV

    表  2  各模型性能对比

    Table  2.   Performance comparison of each model

    模型评价指标
    训练耗时/min训练精度测试精度
    Feedback−Net5 869.730.962 80.963 1
    Feedback−Net+ACB5 854.200.976 20.976 5
    Feedback−Net+ACB+GCP5803.820.978 40.978 4
    下载: 导出CSV
  • [1] 赵志成,柳群义. 中国能源战略规划研究−基于能源消费、能源生产和能源结构的预测[J]. 资源与产业,2019,21(6):1-8. doi: 10.13776/j.cnki.resourcesindustries.20191206.007

    ZHAO Zhicheng,LIU Qunyi. China's energy strategic planning based on prediction of energy consumption,production and structure[J]. Resources & Industry,2019,21(6):1-8. doi: 10.13776/j.cnki.resourcesindustries.20191206.007
    [2] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960. doi: 10.13225/j.cnki.jccs.2019.0585

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Chinese Journal of Coal,2019,44(7):1949-1960. doi: 10.13225/j.cnki.jccs.2019.0585
    [3] 曹现刚,李莹,王鹏,等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005

    CAO Xiangang,LI Ying,WANG Peng,et al. Research status of coal-gangue identification methods and its prospect[J]. Industry and Mine Automation,2020,46(1):38-43. doi: 10.13272/j.issn.1671-251x.2019060005
    [4] 曹现刚,费佳浩,王鹏,等. 基于多机械臂协同的煤矸分拣方法研究[J]. 煤炭科学技术,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002

    CAO Xiangang,FEI Jiahao,WANG Peng,et al. Study on coal-gangue sorting method based on multi-manipulator collaboration[J]. Coal Science and Technology,2019,47(4):7-12. doi: 10.13199/j.cnki.cst.2019.04.002
    [5] 高新宇. 基于机器视觉的煤矸智能识别分选系统设计[D]. 太原: 太原理工大学, 2021.

    GAO Xinyu. Design of intelligent separation system for coal and gangue based on machine vision[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [6] 孙立新. 基于卷积神经网络的煤矸石识别方法研究[D]. 邯郸: 河北工程大学, 2020.

    SUN Lixin. Research on coal gangue recognition method based on convolutional neural network[D]. Handan: Hebei University of Engineering, 2020.
    [7] HE Kaiming, ZHANG Xiangyu, REN Shaoping, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 770-778.
    [8] GAO Huang, ZHUANG Liu, LAURENS V, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 2261-2269.
    [9] PAN Hongguang,SHI Yuhong,LEI Xinyu,et al. Fast identification model for coal and gangue based on the improred ting YoLo v3[J]. Journal of Real-Time Image Processing,2022,19(3):687-701.
    [10] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, 2018: 4510-4520.
    [11] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for mobileNetV3[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2020: 1314-1324.
    [12] ZAMIR A R, WU T L, SUN L, et al. Feedback networks[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 1808-1817.
    [13] LI Hengchao,LI Shuangshuang,HU Wenshuai,et al. Recurrent feedback convolutional neural network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters,2021(19):1-5.
    [14] MIAO Jun,XU Shaowu,ZOU Baixian,et al. ResNet based on feature-inspired gating strategy[J]. Multimedia Tools and Applications,2021,81(5):19283-19300.
    [15] DING Xiaohan, GUO Yuchen, DING Guiguang, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]. IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, 2019: 1911-1920.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  45
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-08-08
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回