Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam
-
摘要: 为探究特厚煤层综放开采条件下底板变形破坏深度,以兖矿能源集团股份有限公司东滩煤矿1305工作面为背景,采用现场实测、数值模拟和理论计算等方法综合分析了该工作面采动煤层底板变形破坏深度。采用应变感应法和钻孔成像技术的现场实测结果表明:底板受采动矿压作用在水平和垂直方向上存在明显的显现特征,水平方向上超前测点50 m附近、底板浅部10 m深度位置开始受采动矿压影响,工作面推过一定距离之后底板变形破坏剧烈;底板不同深度水平方向上超前距和滞后距变化范围分别为96~115 m和48~52 m,工作面综放开采底板变形破坏深度为16~20 m,垂深20 m以下底板岩层以弹性变形为主。数值模拟的底板不同深度塑性区分布特征表明,随着距工作面底板距离越远,受采动矿压影响越小,塑性区范围越小,底板下20 m基本没发生破坏。理论计算结果确定了底板变形破坏深度为19.2 m。综合现场实测、数值模拟和理论计算结果,可知1305工作面综放开采底板变形破坏深度不超过20 m。研究结果可为矿井特厚煤层综放开采底板水害防治提供量化依据。Abstract: In order to explore the deformation and failure depth of the floor under the condition of fully mechanized top coal caving of extra-thick coal seam, this paper takes 1305 working face of Dongtan Coal Mine of Yankuang Energy Group Co., Ltd. as the background. The deformation and failure depth of the floor in the mining coal seam of the working face is comprehensively analyzed by using field measurement, numerical simulation and theoretical calculation. The field measurement results using the strain induction method and borehole imaging technology show the following results. The floor is affected by mining ground pressure, and there are obvious characteristics in horizontal and vertical directions. In the horizontal direction, the position near the advanced support measuring point of 50 m and at the depth of 10 m in the shallow part of the floor starts to be affected by the mining ground pressure. After the working face is pushed over a certain distance, the deformation and failure of the floor are severe. The variation range of crossover distance and lag distance in the horizontal direction of different depths of the floor is 96-115 m and 48-52 m respectively. The deformation and failure depth of the floor in fully mechanized top coal caving of the working face is 16-20 m. The floor rock below the vertical depth of 20 m is mainly elastic deformation. The distribution characteristics of the plastic zone in different depths of the floor by numerical simulation show that the farther the distance from the working face floor is, the smaller the influence of mining pressure is, and the smaller the range of the plastic zone is. The 20 m under the floor is basically not damaged. The result of the theoretical calculation confirms that the deformation and failure depth of the floor is 19.2 m. Based on the results of field measurement, numerical simulation and theoretical calculation, the deformation and failure depth of the floor in 1305 working face is less than 20 m. The research results can provide the quantitative basis for the prevention and control of floor water disasters in fully mechanized top coal caving of extra-thick coal seams.
-
表 1 测试钻孔主要参数
Table 1. Main parameters of test boreholes
参数 1号测试钻孔 2号测试钻孔 开孔直径/mm 127 91 开孔深度/m 2.0 — 孔口管直径/mm 110 — 孔口管长度/m 2.0 — 终孔直径/mm 91 91 钻孔方位角/(°) 31 42 钻孔倾角/(°) 40(俯角) 70(仰角) 钻孔与巷道夹角/(°) 90 80 煤岩层真倾角/(°) 5.6 6.0 钻孔与煤岩层走向线夹角/(°) 81 87 煤岩层视倾角/(°) 5.5 6.0 钻孔总深度/m 30 10 控制3号煤层底板最大真厚度/m 29 11 表 2 工作面采动底板变形感应距
Table 2. Deformation induction distances of mining floor of working face
测点垂深/m 超前距/m 滞后距/m 感应范围/m 16 115 — — 20 110 49 159 24 102 48 150 29 96 52 148 表 3 工作面顶底板岩层物理力学参数
Table 3. Physical and mechanical parameters of working face roof and floor strata
岩层 密度/
(kg·m−3)体积模量/
GPa剪切模量/
GPa黏聚力/
MPa内摩擦角/
(°)抗拉强度/
MPa中细砂岩 2 650 2.90 1.74 9.5 41 4.2 泥质岩 2 550 2.61 1.35 7.6 30 3.0 粗砂岩 2 690 3.35 2.30 10.7 45 4.9 3号煤层 1 400 2.08 0.54 1.2 20 0.6 粉砂岩 2 600 2.91 1.50 7.8 32 3.6 石灰岩 2 800 5.57 4.53 11.4 48 6.7 -
[1] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.State Administration of Coal Mine Safety. Rules for water prevention and control in coal mines[M]. Beijing: China Coal Industry Publishing House, 2018. [2] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170-181. doi: 10.3969/j.issn.1001-1986.2021.01.018YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170-181. doi: 10.3969/j.issn.1001-1986.2021.01.018 [3] 刘杰. 特厚煤层综放工作面围岩运动的微地震监测[J]. 矿业安全与环保,2008,35(1):44-46. doi: 10.3969/j.issn.1008-4495.2008.01.016LIU Jie. Microseismic monitoring of surrounding rock movement in fully mechanized caving face of extra thick coal seam[J]. Minging Safety & Environmental Protection,2008,35(1):44-46. doi: 10.3969/j.issn.1008-4495.2008.01.016 [4] 朱术云,曹丁涛,岳尊彩,等. 特厚煤层综放采动底板变形破坏规律的综合实测[J]. 岩土工程学报,2012,34(10):1931-1938.ZHU Shuyun,CAO Dingtao,YUE Zuncai,et al. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1931-1938. [5] 王一栋,姜振泉,朱术云,等. 特厚煤层采动底板变形破坏的数值模拟与实测对比[J]. 煤矿安全,2012,43(10):35-37. doi: 10.13347/j.cnki.mkaq.2012.10.015WANG Yidong,JIANG Zhenquan,ZHU Shuyun,et al. Contrast of numerical simulation and field measurement on deformation and failure in thick seam mining floor[J]. Safety in Coal Mines,2012,43(10):35-37. doi: 10.13347/j.cnki.mkaq.2012.10.015 [6] 李进军,李怀宾,顾合龙. 厚煤层承压水上开采底板破坏规律数值模拟研究[J]. 煤炭技术,2015,34(2):109-111.LI Jinjun,LI Huaibin,GU Helong. Numerical simulation research on damage of thick coal seam mining above confined water on floor[J]. Coal Technology,2015,34(2):109-111. [7] 杨本水,黄天缘,宣以琼,等. 特厚煤层综放开采底板破坏及阻隔水性能分析[J]. 安徽建筑大学学报,2019,27(3):28-33.YANG Benshui,HUANG Tianyuan,XUAN Yiqiong,et al. Bottom destruction and barrier performance analysis of fully mechanized caving mining in extra-thick coal seam[J]. Journal of Anhui Jianzhu University,2019,27(3):28-33. [8] 范红伟,杨涛. 近距离特厚煤层采动影响下底板破坏及巷道稳定性研究[J]. 矿业研究与开发,2021,41(5):107-112.FAN Hongwei,YANG Tao. Research on floor failure and roadway stability under the influence of mining in near-distance extra-thick coal seam[J]. Mining Research and Development,2021,41(5):107-112. [9] 张郑伟. 特厚煤层综放开采对底板变形损伤的影响研究[J]. 同煤科技,2021(3):7-10.ZHANG Zhengwei. Study on influence of fully mechanized top coal caving mining on deformation and damage of floor in extra thick coal seam[J]. Datong Coal Science & Technology,2021(3):7-10. [10] 陈洋. 大同矿区特厚煤层采动底板变形及破坏深度研究[D]. 徐州: 中国矿业大学, 2021.CHEN Yang. Study on deformation and failure depth of mining-induced floor of extra-thick coal seam in Datong Mining Area[D]. Xuzhou: China University of Mining and Technology, 2021. [11] 高银贵,孔皖军,陈永春,等. 特厚煤层综放开采下工作面底板岩层破坏特征[J]. 能源环境保护,2021,35(6):68-75. doi: 10.3969/j.issn.1006-8759.2021.06.010GAO Yingui,KONG Wanjun,CHEN Yongchun,et al. Study on the failure characteristics of the bottom slate layer in the working face of fully mechanized caving in ultra-thick coal seam[J]. Energy Environmental Protection,2021,35(6):68-75. doi: 10.3969/j.issn.1006-8759.2021.06.010 [12] 王升阳,张志巍. 厚煤层综放开采底板采动破坏及渗流特征[J]. 能源与节能,2022(4):10-14. doi: 10.3969/j.issn.2095-0802.2022.04.003WANG Shengyang,ZHANG Zhiwei. Mining failure and seepage characteristics of fully mechanized caving floor in thick coal seams[J]. Energy and Energy Conservation,2022(4):10-14. doi: 10.3969/j.issn.2095-0802.2022.04.003 [13] 郭国强. 综放开采特厚煤层采场底板破坏规律研究[J]. 煤田地质与勘探,2022,50(8):53-61. doi: 10.12363/issn.1001-1986.21.12.0774GUO Guoqiang. Floor failure law of extra-thick coal seam in fully mechanized caving mining[J]. Coal Geology & Exploration,2022,50(8):53-61. doi: 10.12363/issn.1001-1986.21.12.0774 [14] 于小鸽, 施龙青, 韩进, 等. 损伤底板破坏深度预测理论及应用[M]. 北京: 煤炭工业出版社, 2016.YU Xiaoge, SHI Longqing, HAN Jin, et al. Theory and application of failure depth prediction of damaged floor[M]. Beijing: China Coal Industry Publishing House, 2016. [15] 钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2003.QIAN Minggao, SHI Pingwu. Mine pressure and rock control[M]. Xuzhou: China University of Mining and Technology Press, 2003.