Optimization of structural parameters of wire rope flaw detector based on orthogonal test
-
摘要: 在钢丝绳损伤检测中,探伤仪结构设计对钢丝绳损伤检测精度至关重要。针对现有基于电磁的钢丝绳探伤仪各结构参数及参数各种组合研究不充分的问题,提出了一种基于正交试验的钢丝绳探伤仪结构参数优化方法。基于径向磁环磁场分布的理论数学模型和等效磁路理论模型,分析得出影响钢丝绳探伤仪检测精度的结构参数有磁铁长度、磁铁厚度、衔铁厚度、衔铁长度和倒角参数。通过正交试验方法研究了各参数之间的影响等级及影响显著性:各参数对钢丝绳探伤仪检测精度的影响等级为磁铁厚度、磁铁长度、衔铁长度、衔铁厚度和倒角情况,磁铁厚度、磁铁长度和衔铁长度影响显著,在设计钢丝绳探伤仪时应优先考虑,衔铁厚度及倒角显著性不强,可以忽略;磁铁厚度和磁铁长度( <70 mm)的影响随着水平的增长整体呈正相关关系,随着磁铁厚度和磁铁长度的增大,检测精度会明显提升;而衔铁长度整体呈负相关关系,长度越长,检测精度越差。根据上述分析结果,确定了钢丝绳探伤仪各参数优化数值,并对优化前后的钢丝绳探伤仪的磁力线分布、磁场分布及径向、轴向各相位磁感应强度的分布进行对比验证。结果表明:基于正交试验优化后的钢丝绳探伤仪,磁力线分布均匀,对钢丝绳的励磁效果达到2 T以上,漏磁信号明显,不同相位下的损伤信号区别较大;与优化前的钢丝绳探伤仪相比具有磁感应强度大幅度提高、空域分布明显改善、对传感器位置(提离值)的要求相对宽泛的优势,径向检测精度提升了40%左右,轴向检测精度提高约80%,对钢丝绳损伤的感知效果明显提升。Abstract: In the detection of wire rope damage, the structure design of the flaw detector is very important to the detection precision of wire rope damage. The research on the structural parameters and their combinations of the existing electromagnetic wire rope flaw detector is insufficient. In order to solve the above problems, an optimization method of structural parameters of wire rope flaw detector based on orthogonal test is proposed. Based on the theoretical mathematical model of magnetic field distribution of radial magnetic ring and the theoretical model of the equivalent magnetic circuit, the structural parameters affecting the detection precision of wire rope flaw detector are analyzed and obtained. The parameters include the length of the magnet, the thickness of the magnet, the thickness of the armature, the length of the armature and the chamfer parameter. The influence grade and significance of each parameter are studied by the orthogonal test. The influence grade of each parameter factor on the detection precision of the wire rope flaw detector is the thickness of the magnet, the length of the magnet, the length of the armature, the thickness of the armature and the chamfer. The thickness of the magnet, the length of the magnet and the length of the armature have significant effects. These should be given priority when designing the wire rope flaw detector. The thickness of the armature and the chamfer are not significant and can be ignored. The influence of the thickness of the magnet and the length of the magnet is positively correlated with the increase of level. With the increase of the thickness of the magnet and the length (<70 mm) of the magnet, the detection precision will be significantly improved. The length of the armature shows a negative correlation trend as a whole. The longer the length, the worse the detection precision. According to the analysis results, the optimized values of the parameters of the steel wire rope flaw detector are determined. The magnetic line distribution, the magnetic field distribution and the radial and axial phase magnetic induction intensity distribution of the steel wire rope flaw detector before and after the optimization are compared and verified. The results show that the optimized steel wire rope flaw detector based on the orthogonal test has uniform magnetic flux distribution. The excitation effect of steel wire rope is more than 2 T. The magnetic flux leakage signal is obvious. The damage signal under different phases is quite different. Compared with the steel wire rope flaw detector before optimization, the steel wire rope flaw detector has the following advantages. The magnetic flux leakage intensity is greatly improved. The spatial distribution is obviously improved. The requirements for the position (lift-off value) of the sensor are relatively broad. The radial detection precision is improved by about 40%, and the axial detection precision is improved by about 80%. The perception effect on the damage of the steel wire rope is obviously improved.
-
表 1 正交试验的因素水平情况
Table 1. Factors level of orthogonal test
水平
序号影响因素 Lc/mm Hc/mm Hx/mm Lx/mm C O 1 40 10 3 180 无倒角 2 50 15 6 200 倒直角 3 60 20 9 220 倒圆角 4 70 25 12 240 5 80 30 15 260 表 2 参数水平组合正交表及损伤程度结果
Table 2. Parameter level combination orthogonal table and damage degree results
试验编号 Lc Hc Hx Lx C O 损伤程度/mT 1 1 1 1 1 1 1 26.587144 2 1 2 3 4 3 2 10.624048 3 1 3 5 2 3 3 28.355586 4 1 4 2 5 3 4 26.593358 5 1 5 4 3 2 5 47.330237 6 2 1 5 4 3 5 23.039064 7 2 2 2 2 2 1 48.707213 8 2 3 4 5 1 2 15.770268 9 2 4 1 3 3 3 68.412631 10 2 5 3 1 3 4 138.419259 11 3 1 4 2 3 4 44.946268 12 3 2 1 5 3 5 33.241197 13 3 3 3 3 3 1 57.955367 14 3 4 5 1 2 2 120.399325 15 3 5 2 4 1 3 119.761092 16 4 1 3 5 2 3 13.986221 17 4 2 5 3 1 4 56.378326 18 4 3 2 1 3 5 100.852858 19 4 4 4 4 3 1 145.954792 20 4 5 1 2 3 2 165.448759 21 5 1 2 3 3 2 45.312620 22 5 2 4 1 3 3 69.860399 23 5 3 1 4 2 4 67.972814 24 5 4 3 2 1 5 112.335923 25 5 5 5 5 3 1 73.373379 表 3 影响钢丝绳探伤仪检测精度的因素极差分析
Table 3. Range analysis of factors affecting detection precision of wire rope detector
极差分析项 影响因素 Lc Hc Hx Lx C O 水平值的总值 $ {T_{i1}} $ 139.490372 153.871317 361.662544 456.118983 330.832752 352.577894 $ {T_{i2}} $ 294.348435 218.811184 341.227140 399.793749 298.395810 357.555021 $ {T_{i3}} $ 376.303249 270.906893 333.320818 275.389181 1032.389583 300.375928 $ {T_{i4}} $ 482.620955 473.696028 323.861964 367.351810 0 334.310025 $ {T_{i5}} $ 368.855135 544.332730 301.545679 162.964423 0 316.799280 水平均值 $ {\overline K_{i1}} $ 27.898075 30.774263 72.332509 91.223797 66.166551 70.515579 $ {\overline K_{i2}} $ 58.869687 43.762237 68.245428 79.958750 59.679162 71.511004 $ {\overline K_{i3}} $ 75.260650 54.181379 66.664164 55.077836 68.825972 60.075186 $ {\overline K_{i4}} $ 96.524191 94.739206 64.772393 73.470362 0 66.862005 $ {\overline K_{i5}} $ 73.771027 108.866545 60.309136 32.592885 0 63.359856 极差值 $ \varDelta $ 68.626125 78.092282 12.023373 58.630912 9.146810 11.435819 表 4 影响钢丝绳探伤仪检测精度因素的方差分析
Table 4. Variance analysis of factors affecting detection precision of wire rope detector
因素 离差平方和 自由度 均方值 f 值 P 值 显著性 Lc 12896.964836 4 3224.241209 15.093398 0.01 显著 Hc 22687.266077 4 5671.816519 26.551049 0 显著 Hx 391.984165 4 97.996041 0.458742 0.77 不显著 Lx 10605.710437 4 2651.427609 12.411929 0.02 显著 C 314.296186 2 157.148093 0.735646 0.53 不显著 O 462.493044 4 115.623261 — — — 误差 — 6 213.619302 — — — -
[1] 张峰. 在役钢丝绳检测案例分析[J]. 中国特种设备安全,2021,37(11):103-107. doi: 10.3969/j.issn.1673-257X.2021.11.023ZHANG Feng. Case analysis of wire rope inspection in service[J]. China Special Equipment Safety,2021,37(11):103-107. doi: 10.3969/j.issn.1673-257X.2021.11.023 [2] 李磊. 基于无损检测结果的钢丝绳状态评价的研究初探[J]. 当代化工研究,2021(22):63-65. doi: 10.3969/j.issn.1672-8114.2021.22.021LI Lei. Research on condition evaluation of steel wire rope based on nondestructive testing results[J]. Modern Chemical Research,2021(22):63-65. doi: 10.3969/j.issn.1672-8114.2021.22.021 [3] JOMDECHA C,PRATEEPASEN A. Design of modified electromagnetic main-flux for steel wire rope inspection[J]. NDT & E International,2009,42(1):77-83. [4] LI Xi,ZHANG Juwei,SHI Jingzhuo. A new quantitative non-destructive testing approach of broken wires for steel wire rope[J]. International Journal of Applied Electromagnetics and Mechanics,2020,62:415-431. doi: 10.3233/JAE-190024 [5] TIAN Jie,ZHAO Caiyue,WANG Wei,et al. Detection technology of mine wire rope based on radial magnetic vector with flexible printed circuit[J]. IEEE Transactions on Instrumentation and Measurement,2021,70. DOI: 10.1109/TIM.2021.3096288. [6] ZHOU Ping,ZHOU Gongbo,WANG Houlian,et al. Automatic detection of industrial wire rope surface damage using deep learning-based visual perception technology[J]. IEEE Transactions on Instrumentation and Measurement,2020,70. DOI: 10.1109/TIM.2020.3011762. [7] ZHOU Ping,ZHOU Gongbo,ZHU Zhencai,et al. A review of non-destructive damage detection methods for steel wire ropes[J]. Applied Sciences,2019,9(13). DOI: 10.3390/app9132771. [8] LIU Shiwei,SUN Yanhua,JIANG Xiaoyun,et al. A review of wire rope detection methods,sensors and signal processing techniques[J]. Journal of Nondestructive Evaluation,2020,39:1-18. doi: 10.1007/s10921-019-0643-0 [9] 周俊莹. 基于磁探伤原理的矿用钢丝绳局部缺陷检测方法研究 [D]. 北京: 中国矿业大学(北京), 2019.ZHOU Junying. Research on local defect detection method of mine wire rope based on the principle of magnetic [D]. Beijing: China University of Mining and Technology-Beijing, 2019. [10] 毛清华,李晶,徐小龙,等. 矿用在役提升钢丝绳径向永磁环组合的励磁结构设计[J]. 工程科学与技术,2021,53(4):209-216.MAO Qinghua,LI Jing,XU Xiaolong,et al. Design of excitation structure of mine hoisting wire rope in service combined with radial permanent magnetic ring[J]. Advanced Engineering Sciences,2021,53(4):209-216. [11] 张操,朱承建,刘健康. 基于漏磁原理的钢丝绳探伤仪影响因素研究[J]. 工矿自动化,2015,41(5):52-54.ZHANG Cao,ZHU Chengjian,LIU Jiankang. Research of impact factors of wire rope flaw detector based on principle of magnetic flux leakage[J]. Industry and Mine Automation,2015,41(5):52-54. [12] 张义清,谭继文,朱良. 钢丝绳探伤永磁励磁装置的结构与通用性分析[J]. 煤炭工程,2019,51(9):182-186.ZHANG Yiqing,TAN Jiwen,ZHU Liang. Analysis of structure and universal property of permanent magnet excitation device for steel wire rope flaw detection[J]. Coal Engineering,2019,51(9):182-186. [13] 宋海润,王晓蕾,周树道,等. 基于正交实验的七孔探针结构优化设计[J]. 传感器与微系统,2022,41(3):76-78,82. doi: 10.13873/J.1000-9787(2022)03-0076-03SONG Hairun,WANG Xiaolei,ZHOU Shudao,et al. Structure optimization design of seven-hole probe based on orthogonal experiment[J]. Transducer and Microsystem Technologies,2022,41(3):76-78,82. doi: 10.13873/J.1000-9787(2022)03-0076-03 [14] 王红尧,李小伟,韩亦淼,等. 矿用钢丝绳损伤检测系统设计[J]. 工矿自动化,2020,46(6):92-97. doi: 10.13272/j.issn.1671-251x.17546WANG Hongyao,LI Xiaowei,HAN Yimiao,et al. Design of damage detection system for mine-used wire rope[J]. Industry and Mine Automation,2020,46(6):92-97. doi: 10.13272/j.issn.1671-251x.17546 [15] PENG Q L,MCMURRY S M,COEY J M D. Axial magnetic field produced by axially and radially magnetized permanent rings[J]. Journal of Magnetism and Magnetic Materials,2004,268(1):165-169. [16] 田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122. doi: 10.13272/j.issn.1671-251x.2021120013TIAN Jie,TIAN Zhuang,GUO Hongfei,et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Industry and Mine Automation,2022,48(3):118-122. doi: 10.13272/j.issn.1671-251x.2021120013 [17] 陈小强,赵凌志,彭爱武. 基于正交实验设计的螺旋通道变流器水动力性能数值分析[J]. 推进技术,2022,43(7):438-446.CHEN Xiaoqiang,ZHAO Lingzhi,PENG Aiwu. Numerical analysis of hydrodynamic performance of helical channel converter based on orthogonal experimental design[J]. Journal of Propulsion Technology,2022,43(7):438-446. [18] 张经纬,余虎,卢肇义,等. 基于田口法的内置式双层永磁体转子结构的设计与优化[J]. 大电机技术,2022(1):27-32. doi: 10.3969/j.issn.1000-3983.2022.01.005ZHANG Jingwei,YU Hu,LU Zhaoyi,et al. Design and optimization of a interior rotor structure with dual-layer magnet excitation based on taguchi method[J]. Large Electric Machine and Hydraulic Turbine,2022(1):27-32. doi: 10.3969/j.issn.1000-3983.2022.01.005 [19] 田劼,胡耀松,郭红飞,等. 基于霍尔元件的矿用钢丝绳探伤仪研究[J]. 工矿自动化,2019,45(11):75-80.TIAN Jie,HU Yaosong,GUO Hongfei,et al. Research on mine-used wire rope flaw detector based on Hall element[J]. Industry and Mine Automation,2019,45(11):75-80. [20] 吴德会,刘志天,王晓红,等. 表面缺陷的方向性对漏磁场分布的影响[J]. 物理学报,2017,66(4):266-276.WU Dehui,LIU Zhitian,WANG Xiaohong,et al. Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution[J]. Acta Physica Sinica,2017,66(4):266-276.