留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全卷积神经网络的输送带撕裂检测方法

游磊 朱兴林 陈雨 罗明华

游磊,朱兴林,陈雨,等. 基于全卷积神经网络的输送带撕裂检测方法[J]. 工矿自动化,2022,48(9):16-24.  doi: 10.13272/j.issn.1671-251x.2022040087
引用本文: 游磊,朱兴林,陈雨,等. 基于全卷积神经网络的输送带撕裂检测方法[J]. 工矿自动化,2022,48(9):16-24.  doi: 10.13272/j.issn.1671-251x.2022040087
YOU Lei, ZHU Xinglin, CHEN Yu, et al. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation,2022,48(9):16-24.  doi: 10.13272/j.issn.1671-251x.2022040087
Citation: YOU Lei, ZHU Xinglin, CHEN Yu, et al. Tear detection method of conveyor belt based on fully convolutional neural network[J]. Journal of Mine Automation,2022,48(9):16-24.  doi: 10.13272/j.issn.1671-251x.2022040087

基于全卷积神经网络的输送带撕裂检测方法

doi: 10.13272/j.issn.1671-251x.2022040087
基金项目: 中煤科工集团重庆研究院自立重点研发科研项目(2021ZDXM02,2022ZDXM02)。
详细信息
    作者简介:

    游磊(1983—),男,重庆人,工程师,硕士,主要从事计算机视觉研究工作,E-mail:leiyou2015@126.com

  • 中图分类号: TD634

Tear detection method of conveyor belt based on fully convolutional neural network

  • 摘要: 针对现有输送带撕裂检测方法存在井下可见光成像质量差、缺少撕裂物理尺寸测量手段、泛化能力差等问题,提出了一种基于全卷积神经网络的输送带撕裂检测方法。该方法基于线结构光成像原理采集图像,可有效解决煤矿井下光照条件差的问题;采用改进最大值法进行线激光条纹检测,可有效排除条纹断点,精确提取条纹,并拟合出缺失点;选用全卷积神经网络中的U−net网络对线激光条纹进行撕裂分割,将撕裂检测问题转换成语义分割问题,并通过降维对U−net网络进行优化,从而减少参数量和计算量;将分割结果反投影回原始图像,利用线结构光标定数据完成撕裂物理尺寸测量。实验结果表明:改进最大值法可有效处理线激光条纹断点区域,无误检和漏检,性能优于Steger法和灰度重心法;U−net网络收敛速度快于SegNet和FCNs网络,迭代的稳定性较强,评价指标最优,U−net4网络性能优于U−net3和U−net5。在验证集上的检测结果表明,撕裂检测的召回率为96.09%,精确率为96.85%。在实验平台的测量结果表明,撕裂物理尺寸测量的最大相对误差为−13.04%。

     

  • 图  1  输送带撕裂检测方法原理

    Figure  1.  Tear detection system of conveyor belt

    图  2  输送带撕裂检测流程

    Figure  2.  Tear detection process of conveyor belt

    图  3  线结构光成像

    Figure  3.  Linear structured light imaging

    图  4  线结构光光路模型

    Figure  4.  Optical path model of line structured light

    图  5  改进最大值法

    Figure  5.  Improved max method

    图  6  断点判断

    Figure  6.  Breakpoint judgment

    图  7  数据标注

    Figure  7.  Data annotation

    图  8  优化U−net网络结构

    Figure  8.  Structure of U-net network

    图  9  条纹出现断点时的检测效果对比

    Figure  9.  Comparison of detection effects when the stripes have breakpoints

    图  10  条纹灰度较低时的检测效果对比

    Figure  10.  Comparison of detection effects when the grayscale of the stripes is low

    图  11  局部断点

    Figure  11.  Local breakpoints

    图  12  局部低灰度条纹

    Figure  12.  Local low-gray stripes

    图  13  样本采集和处理

    Figure  13.  Sample collection and processing

    图  14  不同网络训练过程

    Figure  14.  Training process of different networks

    图  15  不同U−net网络训练过程

    Figure  15.  Training process of different U-net networks

    图  16  撕裂检测效果

    Figure  16.  Tear detection results

    表  1  不同网络训练结果对比

    Table  1.   Comparison of training results of different networks

    网络模型dice系数mIoU
    验证集训练集验证集训练集
    U−net0.94710.98160.94700.9831
    SegNet0.93880.96800.93890.9665
    FCNs0.93270.95730.93280.9576
    下载: 导出CSV

    表  2  不同U−net网络训练结果对比

    Table  2.   Comparison of training results of different U-net networks

    网络模型dice系数mIoU
    验证集训练集验证集训练集
    U−net30.94080.96630.94120.9677
    U−net40.94560.98190.94670.9828
    U−net50.94710.98160.94700.9831
    下载: 导出CSV

    表  3  撕裂检测混淆矩阵

    Table  3.   Confusion matrix of tearing detection

    真值预测值
    撕裂正常
    撕裂1235
    正常4N/A
    下载: 导出CSV

    表  4  撕裂物理尺寸测量结果

    Table  4.   Measurement results of tear physical dimensions

    序号测量结果/mm标准值/mm相对误差/%
    111.3010.1810.96
    215.0816.14−6.58
    312.2113.90−12.16
    46.807.72−11.95
    513.4512.1810.45
    618.2316.907.86
    710.049.0810.61
    816.6515.845.10
    911.5913.06−11.24
    1014.1313.028.52
    1120.7519.367.16
    1217.5218.10−3.19
    1317.9616.489.00
    1411.4110.726.40
    1518.6117.069.11
    164.875.60−13.04
    下载: 导出CSV
  • [1] HAKAMI F,PRAMANIK A,RIDGWAY N,et al. Developments of rubber material wear in conveyer belt system[J]. Tribology International,2017,111:148-158. doi: 10.1016/j.triboint.2017.03.010
    [2] GUO Xiaoqiang,LIU Xinhua,ZHOU Hao,et al. Belt tear detection for coal mining conveyors[J]. Micromachines,2022,13(3):449. doi: 10.3390/mi13030449
    [3] KOZLOWSKI T,WODECKI J,ZIMROZ R,et al. A diagnostics of conveyor belt splices[J]. Applied Sciences,2020,10(18):6259. doi: 10.3390/app10186259
    [4] QIAO Tiezhu, CHEN Lulu, PANG Yusong, et al. Integrative binocular vision detection method based on infrared and visible light fusion for conveyor belts longitudinal tear[J]. Measurement, 2017, 110: 192-201.
    [5] YANG Ruiyun, QIAO Tiezhu, PANG Yusong, et al. Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement, 2020, 165. DOI: 10.1016/j.measurement.2020.107856.
    [6] YANG Yanli, ZHAO Yanfei, MIAO Changyun, et al. On-line longitudinal rip detection of conveyor belts based on machine vision[C]. IEEE International Conference on Signal and Image Processing, Beijing, 2016: 315-318.
    [7] 太原理工大学. 一种基于红外图像的实时矿用胶带预警撕裂检测方法: 201811338007.9[P]. 2018-11-12.

    Taiyuan University of Technology. A real-time early warning and tear detection method for mine conveyor belt based on infrared images: 201811338007.9[P]. 2018-11-12.
    [8] 周宇杰,徐善永,黄友锐,等. 基于改进YOLOv4的输送带损伤检测方法[J]. 工矿自动化,2021,47(11):61-65. doi: 10.13272/j.issn.1671-251x.17843

    ZHOU Yujie,XU Shanyong,HUANG Yourui,et al. Conveyor belt damage detection method based on improved YOLOv4[J]. Industry and Mine Automation,2021,47(11):61-65. doi: 10.13272/j.issn.1671-251x.17843
    [9] 韩雷. 基于线激光视觉检测的矿用输送机纵向撕裂保护系统研究[J]. 神华科技,2018,16(9):29-31,49. doi: 10.3969/j.issn.1674-8492.2018.09.008

    HAN Lei. Study about mine conveyor longitudinal tear protection system by using line laser visual detection[J]. Shenhua Science and Technology,2018,16(9):29-31,49. doi: 10.3969/j.issn.1674-8492.2018.09.008
    [10] LYU Zhiwei,ZHANG Xiaoguang,HU Jiangdi,et al. Visual detection method based on line lasers for the detection of longitudinal tears in conveyor belts[J]. Measurement,2021,183. DOI: 10.1016/j.measurement.2021.109800.
    [11] 徐辉,刘丽静,沈科,等. 基于多道线性激光的带式输送机纵向撕裂检测[J]. 工矿自动化,2021,47(7):37-44. doi: 10.13272/j.issn.1671-251x.17681

    XU Hui,LIU Lijing,SHEN Ke,et al. Longitudinal tear detection of belt conveyor based on multi linear lasers[J]. Industry and Mine Automation,2021,47(7):37-44. doi: 10.13272/j.issn.1671-251x.17681
    [12] BLAZEJ R,JURDZIAK L,KOZLOWSKI T,et al. The use of magnetic sensors in monitoring the condition of the core in steel cord conveyor belts:tests of the measuring probe and the design of the DiagBelt system[J]. Measurement,2018,123:48-53. doi: 10.1016/j.measurement.2018.03.051
    [13] ZUO Chao,FENG Shijie,HUANG Lei,et al. Phase shifting algorithms for fringe projection profilometry:a review[J]. Optics and Lasers in Engineering,2018,109:23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [14] ZHANG Song. High-speed 3D shape measurement with structured light methods:a review[J]. Optics and Lasers in Engineering,2018,106:119-131.
    [15] 黄琬婷,胡小平. 一种基于张氏标定法的单目相机改进标定算法[J]. 导航与控制,2019,18(1):105-111. doi: 10.3969/j.issn.1674-5558.2019.01.014

    HUANG Wanting,HU Xiaoping. An improved calibration algorithm of monocular camera based on Zhang's plane calibration method[J]. Navigation and Control,2019,18(1):105-111. doi: 10.3969/j.issn.1674-5558.2019.01.014
    [16] 冀振燕,宋晓军,付文杰,等. 激光光条中心线提取研究综述[J]. 测控技术,2021,40(6):1-8. doi: 10.19708/j.ckjs.2021.06.001

    JI Zhenyan,SONG Xiaojun,FU Wenjie,et al. Review on centerline extraction for laser stripe[J]. Measurement & Control Technology,2021,40(6):1-8. doi: 10.19708/j.ckjs.2021.06.001
    [17] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015.
    [18] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [19] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
    [20] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. European Conference on Computer Vision, 2018: 833-851.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  70
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-09-05
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回