Research on surrounding rock failure law of large mining height working face in thick loose layer based on microseismic monitoring
-
摘要: 针对厚松散层薄基岩条件下的围岩运移规律研究大多采用建立力学模型、数值计算等理论研究手段,缺乏基于现场动态实测的研究。微震监测技术近年来在矿井动力灾害监测预警方面得到广泛应用,但基于微震监测技术的厚松散层薄基岩条件下的围岩破坏规律研究较少。针对上述问题,以焦煤集团有限责任公司赵固一矿16001工作面为工程背景,选用孔−巷联合台网布置方式,构建高精度微震监测系统,基于微震监测结果对厚松散层薄基岩条件下大采高工作面围岩动态破坏规律进行研究。根据围岩累计释放能量,采用核密度分析法分析微震事件的能量密度,以达到研究围岩裂隙发育状况的目的。分析结果表明:顶板最大破坏高度达87.8 m,底板最大采动破坏深度达21.7 m,最大值均出现在工作面回采见方阶段,该阶段顶板突水危险性最高;见方阶段顶板承载岩梁破坏,出现异常来压,顶底板及超前破坏程度加剧,验证了应力击穿效应的存在;距工作面顶板48.3 m处的砂质泥岩为顶板隔水关键层,距顶板67.7 m的粉砂岩为击穿控制层,距底板26.6 m的砂质泥岩为底板隔水关键层。通过底板钻孔窥视对微震监测分析结果进行验证,结果显示,见方区域底板破坏深度大于18 m,其他区域底板破坏深度为12~18 m,与微震监测结果吻合。Abstract: The research on the movement law of surrounding rock under the condition of thick loose layer and thin bedrock mostly adopts theoretical research methods such as establishing a mechanical model and numerical calculation. It lacks research based on field dynamic measurement. The microseismic monitoring technology has been widely used in mine dynamic disaster monitoring and early warning in recent years. However, there are few studies on the failure law of surrounding rock under the condition of thick loose layer and thin bedrock based on microseismic monitoring technology. In view of the above problems, taking the 16001 working face of Zhaogu No. 1 Coal Mine of Coking Coal Energy Co., Ltd. as the engineering background, a high-precision microseismic monitoring system is established. The system is built by selecting the network arrangement mode of the borehole-roadway union. Based on the microseismic monitoring results, the dynamic failure law of surrounding rock in large mining height working face under the condition of thick loose layer and thin bedrock is studied. According to the accumulated released energy of surrounding rock, the energy density of the microseismic event is analyzed by adopting a nuclear density analysis method so as to achieve the purpose of studying the fracture development of the surrounding rock. The analysis results show that the maximum roof damage height is 87.8 m, and the maximum floor damage depth is 21.7 m. The maximum values all appear in the square stage of the working face, at which the roof water inrush risk is the highest. In the square stage, the roof-bearing rock beam is damaged, abnormal pressure occurs, and the damage degree of the roof, floor and advanced support is intensified. The results verify the existence of the stress breakdown effect. The sandy mudstone 48.3 m away from the roof of the working face is the key layer of the roof water barrier. The siltstone 67.7 m away from the roof is the breakdown control layer. The sandy mudstone 26.6 m away from the floor is the key layer of the floor water barrier. The results of microseismic monitoring and analysis are verified by bottom borehole peeping. The results show that the floor damage depth in the square area is more than 18 m, and the floor damage depth in other areas is 12-18 m. These results are consistent with the microseismic monitoring results.
-
表 1 定位精度标定结果
Table 1. Calibration results of positioning accuracy
m 位置 项目 x y z 进风巷 实测值 38 462 872.4 3 920 374.4 −436.0 定位值 38 462 873.9 3 920 378.2 −432.9 差值 1.5 3.8 3.1 回风巷 实测值 38 462 703.4 3 920 239.9 −458.2 定位值 38 462 705.6 3 920 237.6 −465.7 差值 2.2 2.3 7.5 表 2 底板窥视孔参数
Table 2. Parameters of bottom plate peepholes
孔号 进尺/m 窥视时滞后
工作面距离/m煤层底板
下垂深/m终孔位置
岩性倾角/(°) 1 132 65 18.8 砂质泥岩 70 2 190 70 19.5 L9灰岩 68 3 278 65 19.0 砂质泥岩 70 -
[1] 李振华. 薄基岩突水威胁煤层围岩破坏机理及应用研究[D]. 北京: 中国矿业大学(北京), 2010.LI Zhenhua. Research on failure mechanism and application of surrounding rock about thin bedrock coal seam with threat of waterinrush[D]. Beijing: China University of Mining & Technology-Beijing, 2010. [2] 许延春,李振华,贾安立,等. 深厚松散层薄基岩条件下覆岩破坏高度实测分析[J]. 煤炭科学技术,2010,38(7):21-23.XU Yanchun,LI Zhenhua,JIA Anli,et al. Site measurement and analysis on failure height of overburden strata under thick loose alluvium and thin bedrock[J]. Coal Science and Technology,2010,38(7):21-23. [3] 李江华,许延春,姜鹏,等. 巨厚松散层薄基岩工作面覆岩载荷传递特征研究[J]. 煤炭科学技术,2017,45(11):95-100.LI Jianghua,XU Yanchun,JIANG Peng,et al. Study on load transmission characteristics of overburden rock above coal mining face in thin bedrock of super thick unconsolidated stratum[J]. Coal Science and Technology,2017,45(11):95-100. [4] 李江华. 水压作用下防砂安全煤(岩)柱失稳突水溃砂机理研究[D]. 北京: 中国矿业大学(北京), 2016.LI Jianghua. Study on the mechanism of water and sand burst caused by instability failure of sand prevention safety coal (rock) pillar under hydraulic pressure effect[D]. Beijing: China University of Mining & Technology-Beijing, 2016. [5] 郭文兵,杨达明,谭毅,等. 薄基岩厚松散层下充填保水开采安全性分析[J]. 煤炭学报,2017,42(1):106-111.GUO Wenbing,YANG Daming,TAN Yi,et al. Study on safety of overlying strata by backfilling in water-preserved mining under thick alluvium and thin bedrock[J]. Journal of China Coal Society,2017,42(1):106-111. [6] 杨达明,郭文兵,谭毅,等. 薄基岩厚松散含水层下综放开采安全性研究[J]. 安全与环境学报,2018,18(1):129-134.YANG Daming,GUO Wenbing,TAN Yi,et al. On the fully mechanized cave-in mining safety under the condition of the thin overlain bedrock by the thick alluvium[J]. Journal of Safety and Environment,2018,18(1):129-134. [7] 张通,袁亮,赵毅鑫,等. 薄基岩厚松散层深部采场裂隙带几何特征及矿压分布的工作面效应[J]. 煤炭学报,2015,40(10):2260-2268.ZHANG Tong,YUAN Liang,ZHAO Yixin,et al. Distribution law of working face pressure under the fracture zone distribution characteristic of deep mining[J]. Journal of China Coal Society,2015,40(10):2260-2268. [8] 杜锋,白海波. 厚松散层薄基岩综放开采覆岩破断机理研究[J]. 煤炭学报,2012,37(7):1105-1110. doi: 10.13225/j.cnki.jccs.2012.07.015DU Feng,BAI Haibo. Mechanism research of overlying strata activity with fully mechanized caving in thin bedrock with thick alluvium[J]. Journal of China Coal Society,2012,37(7):1105-1110. doi: 10.13225/j.cnki.jccs.2012.07.015 [9] 杜锋,白海波,黄汉富,等. 薄基岩综放采场基本顶周期来压力学分析[J]. 中国矿业大学学报,2013,42(3):362-369.DU Feng,BAI Haibo,HUANG Hanfu,et al. Mechanical analysis of periodic weighting of main roof in longwall top coal caving face with thin bedrock roof[J]. Journal of China University of Mining & Technology,2013,42(3):362-369. [10] 张华磊,涂敏,程桦,等. 深埋薄基岩煤层采场顶板破断机制研究[J]. 采矿与安全工程学报,2017,34(5):825-831.ZHANG Hualei,TU Min,CHENG Hua,et al. Study on mechanism of stope roof fracture in deep-buried coal seam with thin bedrock[J]. Journal of Mining & Safety Engineering,2017,34(5):825-831. [11] 王悦,于水,王苏健,等. 微震监测技术在煤矿底板突水预警中的应用[J]. 煤炭科学技术,2018,46(8):68-73.WANG Yue,YU Shui,WANG Sujian,et al. Application of microseismic monitoring technology in water inrush warning of coal mine floor[J]. Coal Science and Technology,2018,46(8):68-73. [12] 姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932-1938. doi: 10.3321/j.issn:1000-6915.2008.09.023JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision micro-seismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938. doi: 10.3321/j.issn:1000-6915.2008.09.023 [13] 姜福兴,刘伟建,叶根喜,等. 构造活化的微震监测与数值模拟耦合研究[J]. 岩石力学与工程学报,2010,29(增刊2):3590-3597.JIANG Fuxing,LIU Weijian,YE Genxi,et al. Coupling study of microseismic monitoring and unmerical simulation for tectonic activation[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(S2):3590-3597. [14] 蒋金泉,张培鹏,秦广鹏,等. 高位主关键层破断失稳及微震活动分析[J]. 岩土力学,2015,36(12):3567-3575.JIANG Jinquan,ZHANG Peipeng,QIN Guangpeng,et al. Analysis of destabilized fracture and microseismic activity of high-located main key strata[J]. Rock and Soil Mechanics,2015,36(12):3567-3575. [15] 刘超,唐春安,张省军,等. 微震监测系统在张马屯帷幕区域的应用研究[J]. 采矿与安全工程学报,2009,26(3):349-353. doi: 10.3969/j.issn.1673-3363.2009.03.020LIU Chao,TANG Chun'an,ZHANG Shengjun,et al. Application of microseismic monitoring system in Zhangmatun curtain region[J]. Journal of Mining and Satety Engineering,2009,26(3):349-353. doi: 10.3969/j.issn.1673-3363.2009.03.020 [16] 刘超,唐春安,李连崇,等. 基于背景应力场与微震活动性的注浆帷幕突水危险性评价[J]. 岩石力学与工程学报,2009,28(2):366-372. doi: 10.3321/j.issn:1000-6915.2009.02.021LIU Chao,TANG Chun'an,LI Lianchong,et al. Analysis of probability of water inrush from grout curtain based on background stress field and microseismicity[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):366-372. doi: 10.3321/j.issn:1000-6915.2009.02.021 [17] 刘超,吴顺川,程爱平,等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报,2014,36(9):1129-1135.LIU Chao,WU Shunchuan,CHENG Aiping,et al. Microseismic monitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing,2014,36(9):1129-1135. [18] 陈法兵. 矿山微震定位子台网的分布对定位精度的影响[J]. 煤矿开采,2016,21(4):107-114. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.028CHEN Fabing. Influence of mine microseism location sub network distribution to positioning precision[J]. Coal Mining Technology,2016,21(4):107-114. doi: 10.13532/j.cnki.cn11-3677/td.2016.04.028 [19] 翟常治, 辛崇伟, 靳国栋, 等. 煤矿突水危险预警方法及岩体单一裂隙发育范围计算方法: 202010637427.8[P]. 2020-07-03.ZHAI Changzhi, XIN Chongwei, JIN Guodong, et al. Early warning method of water inrush risk in coal mine and calculation method of development range of single fracture in rock mass: 202010637427.8[P]. 2020-07-03. [20] 李东,姜福兴,王存文,等. “见方效应”与“应力击穿效应”联动致灾机理及防治技术研究[J]. 采矿与安全工程学报,2018,35(5):1014-1021.LI Dong,JIANG Fuxing,WANG Cunwen,et al. Study on the mechanism and prevention technology of "square position" and "stress breakdown effect" inducing rockburst[J]. Journal of Mining & Safety Engineering,2018,35(5):1014-1021.