留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光反射率突变的受力岩石裂纹提取方法

高祥 高亚楠

高祥,高亚楠. 基于光反射率突变的受力岩石裂纹提取方法[J]. 工矿自动化,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066
引用本文: 高祥,高亚楠. 基于光反射率突变的受力岩石裂纹提取方法[J]. 工矿自动化,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066
GAO Xiang, GAO Yanan. Method for extracting stressed rock crack based on light reflectivity mutation[J]. Journal of Mine Automation,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066
Citation: GAO Xiang, GAO Yanan. Method for extracting stressed rock crack based on light reflectivity mutation[J]. Journal of Mine Automation,2022,48(8):76-84.  doi: 10.13272/j.issn.1671-251x.2022040066

基于光反射率突变的受力岩石裂纹提取方法

doi: 10.13272/j.issn.1671-251x.2022040066
基金项目: 安徽理工大学引进人才基金资助项目(13210153) 。
详细信息
    作者简介:

    高祥(1990—),男,河南周口人,讲师,博士,主要从事矿山岩石力学研究工作,E-mail:gaoxiang1606@163.com

    通讯作者:

    高亚楠(2002—),男,安徽蚌埠人,本科在读,研究方向为智能采矿工程,E-mail:3351613411@qq.com

  • 中图分类号: TD315

Method for extracting stressed rock crack based on light reflectivity mutation

  • 摘要: 裂纹识别与提取是认识围岩裂纹演变规律的基础。针对目前基于可见光照片的受力岩石裂纹提取方法对由多色矿物组成的复杂岩石(如花岗岩)裂纹提取效果较差的问题,提出一种基于光反射率突变的受力岩石裂纹提取方法。该方法包括光反射率计算、光反射率突变点识别、光反射率突变点空间分异性分析、裂纹信息提取4个关键步骤。裂纹发育引起的光反射率突变点在空间上的分异性是识别裂纹的关键特征,因此,引入反映空间点分布集中程度的指标−分异系数C,根据光反射率突变点的空间分异性判断数字图像中是否存在裂纹。判断出数字照片中存在裂纹后,一方面,通过光反射率变化速率反映裂纹活动的瞬时信息,以研究试件在何时、何处有裂纹产生或扩展;另一方面,提取出裂纹活动的累积信息,以分析一段时间内岩石表面裂纹的发育、扩展情况及贯通程度。实验结果表明:① 受力岩石裂纹发育、扩展可引起光反射率突变,突变速率可达0.2/s,远大于由其他随机因素导致的变化速率(0.03/s)。② 在裂纹活动时刻,光反射率突变点呈显著的空间分异现象(C值可达189),分异系数远大于随机分布时的值(C值为1)。③ 所提方法能够提取出裂纹活动的瞬时信息和累积信息。最后讨论了岩石破裂过程中光反射率变化的原因、所提方法的岩石力学意义及其在巷道安全巡检中的应用前景。

     

  • 图  1  受力岩石裂纹提取流程

    Figure  1.  Crack extraction process of stressed rock

    图  2  受力岩石裂纹提取实验系统

    Figure  2.  Experimental system of crack extraction of stressed rock

    图  3  标准板灰度分析结果

    Figure  3.  Grayscale analysis results of standard plates

    图  4  AR0区域裂纹活动前后照片

    Figure  4.  Photographs of AR0 region before and after crack activity

    图  5  AR0区域裂纹活动前后光反射率变化速率空间分布

    Figure  5.  Spatial distribution of change speed of light reflectivity before and after crack activity in AR0 region

    图  6  AR0 区域无裂纹活动时刻光反射率变化速率直方图

    Figure  6.  Histogram of light reflectivity variation at the time without crack activity in AR0 region Histogram of light reflectivity variation

    图  7  光反射率突变点空间分布

    Figure  7.  Spatial distribution of mutation points of light reflectivity

    图  8  试件加载过程中光反射突变点分异系数变化曲线

    Figure  8.  The variation curve of differentiation coefficient of mutation points of light reflectivity during specimen loading process

    图  9  试件加载过程中声发射突变率变化曲线

    Figure  9.  The variation curve of acoustic emission mutation rate during specimen loading process

    图  10  裂纹发育、扩展瞬时信息

    Figure  10.  Instantaneous information of crack development and propagation

    图  11  裂纹发育、扩展累积信息

    Figure  11.  Accumulation information of crack development and propagation

    图  12  试件破坏过程中光反射率变化空间分布

    Figure  12.  Spatial distribution of light reflectivity changes during specimen failure

    图  13  基于光反射率突变的花岗岩试件裂纹提取结果

    Figure  13.  Crack extraction results of granite specimens based on mutation of light reflectivity

  • [1] 陈世江,朱万成,张敏思,等. 基于数字图像处理技术的岩石节理分形描述[J]. 岩土工程学报,2012,34(11):2087-2092.

    CHEN Shijiang,ZHU Wancheng,ZHANG Minsi,et al. Fractal description of rock joints based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering,2012,34(11):2087-2092.
    [2] 刘树新,邢杰,郑旭,等. 岩石轴压CT图像的分区损伤信息与临界破坏识别[J]. 岩土工程学报,2021,43(3):432-438.

    LIU Shuxin,XING Jie,ZHENG Xu,et al. Zonal damage information and critical failure identification of CT images of rock under triaxial compression[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):432-438.
    [3] 张毅,李皋,王希勇,等. 川西须家河组致密砂岩高温后微组构特征及对力学性能的影响[J]. 岩石力学与工程学报,2021,40(11):2249-2259.

    ZHANG Yi,LI Gao,WANG Xiyong,et al. Microfabric characteristics of tight sandstone of Xujiahe formation in western Sichuan after high temperature and the effect on mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2249-2259.
    [4] 张艳博,王科学,姚旭龙,等. 基于波速场成像技术的岩石损伤评价研究[J]. 岩石力学与工程学报,2019,38(12):2404-2417.

    ZHANG Yanbo,WANG Kexue,YAO Xulong,et al. Rock damage evaluation based on wave velocity field imaging technology[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2404-2417.
    [5] MA Liqiang,SUN Hai,ZHANG Yao,et al. Characteristics of infrared radiation of coal specimens under uniaxial loading[J]. Rock Mechanics and Rock Engineering,2016,49:1567-1572. doi: 10.1007/s00603-015-0780-4
    [6] 刘春,许强,施斌,等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报,2018,40(5):925-931. doi: 10.11779/CJGE201805018

    LIU Chun,XU Qiang,SHI Bin,et al. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering,2018,40(5):925-931. doi: 10.11779/CJGE201805018
    [7] 王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909-1924.

    WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909-1924.
    [8] 杨永明,鞠杨,毛灵涛. 三轴应力下致密砂岩裂纹展布规律及表征方法[J]. 岩土工程学报,2014,36(5):864-872. doi: 10.11779/CJGE201405008

    YANG Yongming,JU Yang,MAO Lingtao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering,2014,36(5):864-872. doi: 10.11779/CJGE201405008
    [9] 李德建,关磊,韩立强,等. 白皎煤矿玄武岩岩爆破坏微观裂纹特征分析[J]. 煤炭学报,2014,39(2):307-314.

    LI Dejian,GUAN Lei,HAN Liqiang,et al. Analysis of micro-crack characteristics from rockburst failure of basalt in Baijiao Coal Mine content[J]. Journal of China Coal Society,2014,39(2):307-314.
    [10] 冷彪,张毅,杨辉,等. 隧道掌子面岩体裂隙快速识别方法[J]. 西南交通大学学报,2021,56(2):246-252,322.

    LENG Biao,ZHANG Yi,YANG Hui,et al. Rapid recognition of rock mass fractures in tunnel faces[J]. Journal of Southwest Jiaotong University,2021,56(2):246-252,322.
    [11] 李兆霖,王连国,姜崇扬,等. 基于实时CT扫描的岩石真三轴条件下三维破裂演化规律[J]. 煤炭学报,2021,46(3):937-949.

    LI Zhaolin,WANG Lianguo,JIANG Chongyang,et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning[J]. Journal of China Coal Society,2021,46(3):937-949.
    [12] 温世亿,李静,苏霞,等. 复杂应力条件下围岩破坏的细观特征研究[J]. 岩土力学,2010,31(8):2399-2406. doi: 10.3969/j.issn.1000-7598.2010.08.009

    WEN Shiyi,LI Jing,SU Xia,et al. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. Rock and Soil Mechanics,2010,31(8):2399-2406. doi: 10.3969/j.issn.1000-7598.2010.08.009
    [13] 李昂,邵国建,孙阳,等. 软硬互层状岩体局部区域的细观非均匀特性研究[J]. 岩石力学与工程学报,2017,36(增刊2):3852-3863.

    LI Ang,SHAO Guojian,SUN Yang,et al. Study on meso-inhomogeneity of local region of alternatively distributed soft and hard composite rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S2):3852-3863.
    [14] 李志伟. 煤岩CT图中基于序列特征的裂隙识别方法研究[D]. 北京: 中国矿业大学(北京), 2020.

    LI Zhiwei. Research on fracture identification methods based on sequence features in CT images of coal-rock[D]. Beijing: China University of Mining and Technology-Beijing, 2020.
    [15] 吴贤振,高祥,赵奎,等. 岩石破裂过程中红外温度场瞬时变化异常探究[J]. 岩石力学与工程学报,2016,35(8):1578-1594.

    WU Xianzhen,GAO Xiang,ZHAO Kui,et al. Abnormality of transient infrared temperature field(ITF) in the process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(8):1578-1594.
    [16] HUANG Jianwei,LIU Shanjun,LIU Wenfang,et al. Experimental study on the thermal infrared spectral variation of fractured rock[J]. Remote Sensing,2021,13(6):1191. doi: 10.3390/rs13061191
    [17] HUANG Jianwei,LIU Shanjun,GAO Xiang,et al. Experimental study of the thermal infrared emissivity variation of loaded rock and its significance[J]. Remote Sensing,2018,10(6):818. doi: 10.3390/rs10060818
    [18] GAO Xiang, LIU Shanjun, WU Lixin, et al. The variation of microwave brightness temperature of granite pressed under weak background radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2‏): 1369-1381.
    [19] GAO Xiang,LIU Shanjun,WU Lixin,et al. The anisotropy and polarization of stress-induced microwave radiation changes in granite and their significance for seismic remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(9):7603-7617. doi: 10.1109/TGRS.2020.3034126
    [20] 仰云峰,申宝剑,腾格尔,等. 有机质反射率的数字图像实现方法[J]. 石油实验地质,2017,39(4):562-566. doi: 10.11781/sysydz201704562

    YANG Yunfeng,SHEN Baojian,Tenger,et al. Determination of reflectance of organic matter by digital image processing[J]. Petroleum Geology & Experiment,2017,39(4):562-566. doi: 10.11781/sysydz201704562
    [21] 刘吉平. 遥感原理及遥感信息分析基础[M]. 武汉: 武汉大学出版社, 2012.

    LIU Jiping. Principle of remote sensing and basis of remote sensing information analysis[M]. Wuhan: Wuhan University Press, 2012.
    [22] 高祥,熊伟,徐金辉,等. 粉砂岩失稳过程的红外高温点聚集异常[J]. 有色金属科学与工程,2016,7(1):68-73. doi: 10.13264/j.cnki.ysjskx.2016.01.014

    GAO Xiang,XIONG Wei,XU Jinhui,et al. Abnormal aggregation of infrared high temperature points in process of siltstone failure[J]. Nonferrous Metals Science and Engineering,2016,7(1):68-73. doi: 10.13264/j.cnki.ysjskx.2016.01.014
    [23] 张瑞芳,黄泽纯,洪安东,等. 利用样方分析小微地震空间分布模式[J]. 测绘与空间地理信息,2018,41(6):21-24. doi: 10.3969/j.issn.1672-5867.2018.06.007

    ZHANG Ruifang,HUANG Zechun,HONG Andong,et al. Exploring spatial distribution pattern of small earthquakes using quadrat analysis[J]. Geomatics & Spatial Information Technology,2018,41(6):21-24. doi: 10.3969/j.issn.1672-5867.2018.06.007
    [24] 高祥,刘善军,黄建伟,等. 应变率对岩石变形过程声发射特征的影响[J]. 岩石力学与工程学报,2018,37(4):887-897. doi: 10.13722/j.cnki.jrme.2017.0939

    GAO Xiang,LIU Shanjun,HUANG Jianwei,et al. The influence of strain rate on AE characteristics during rock deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):887-897. doi: 10.13722/j.cnki.jrme.2017.0939
    [25] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. doi: 10.13199/j.cnki.cst.2020.07.002

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. doi: 10.13199/j.cnki.cst.2020.07.002
    [26] 杨春雨,袁晓光. 煤矿井下巷道变形巡检视频异常检测方法[J]. 工矿自动化,2021,47(2):13-17. doi: 10.13272/j.issn.1671-251x.17702

    YANG Chunyu,YUAN Xiaoguang. Anomaly detection method of inspection video for coal mine underground roadway deformation[J]. Industry and Mine Automation,2021,47(2):13-17. doi: 10.13272/j.issn.1671-251x.17702
  • 加载中
图(13)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  41
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回